Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem4 Structured version   Visualization version   GIF version

Theorem lcvexchlem4 37999
Description: Lemma for lcvexch 38001. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
lcvexch.f (𝜑𝑇𝐶(𝑇 𝑈))
Assertion
Ref Expression
lcvexchlem4 (𝜑 → (𝑇𝑈)𝐶𝑈)

Proof of Theorem lcvexchlem4
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvexch.s . . . 4 𝑆 = (LSubSp‘𝑊)
2 lcvexch.c . . . 4 𝐶 = ( ⋖L𝑊)
3 lcvexch.w . . . 4 (𝜑𝑊 ∈ LMod)
4 lcvexch.t . . . 4 (𝜑𝑇𝑆)
5 lcvexch.u . . . . 5 (𝜑𝑈𝑆)
6 lcvexch.p . . . . . 6 = (LSSum‘𝑊)
71, 6lsmcl 20699 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
83, 4, 5, 7syl3anc 1371 . . . 4 (𝜑 → (𝑇 𝑈) ∈ 𝑆)
9 lcvexch.f . . . 4 (𝜑𝑇𝐶(𝑇 𝑈))
101, 2, 3, 4, 8, 9lcvpss 37986 . . 3 (𝜑𝑇 ⊊ (𝑇 𝑈))
111, 6, 2, 3, 4, 5lcvexchlem1 37996 . . 3 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
1210, 11mpbid 231 . 2 (𝜑 → (𝑇𝑈) ⊊ 𝑈)
1333ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑊 ∈ LMod)
141lsssssubg 20574 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1513, 14syl 17 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑆 ⊆ (SubGrp‘𝑊))
16 simp2 1137 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠𝑆)
1715, 16sseldd 3983 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠 ∈ (SubGrp‘𝑊))
1843ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇𝑆)
1915, 18sseldd 3983 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
206lsmub2 19528 . . . . . . 7 ((𝑠 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → 𝑇 ⊆ (𝑠 𝑇))
2117, 19, 20syl2anc 584 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇 ⊆ (𝑠 𝑇))
2253ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈𝑆)
2315, 22sseldd 3983 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
24 simp3r 1202 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠𝑈)
256lsmless1 19530 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑠𝑈) → (𝑠 𝑇) ⊆ (𝑈 𝑇))
2623, 19, 24, 25syl3anc 1371 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 𝑇) ⊆ (𝑈 𝑇))
27 lmodabl 20524 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
283, 27syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Abel)
293, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
3029, 4sseldd 3983 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑊))
3129, 5sseldd 3983 . . . . . . . . 9 (𝜑𝑈 ∈ (SubGrp‘𝑊))
326lsmcom 19728 . . . . . . . . 9 ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 𝑈) = (𝑈 𝑇))
3328, 30, 31, 32syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
34333ad2ant1 1133 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
3526, 34sseqtrrd 4023 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 𝑇) ⊆ (𝑇 𝑈))
3693ad2ant1 1133 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇𝐶(𝑇 𝑈))
371, 2, 3, 4, 8lcvbr3 37985 . . . . . . . . . 10 (𝜑 → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))))))
3837adantr 481 . . . . . . . . 9 ((𝜑𝑠𝑆) → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))))))
393adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑊 ∈ LMod)
40 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑠𝑆)
414adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑇𝑆)
421, 6lsmcl 20699 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑠𝑆𝑇𝑆) → (𝑠 𝑇) ∈ 𝑆)
4339, 40, 41, 42syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 𝑇) ∈ 𝑆)
44 sseq2 4008 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑇𝑟𝑇 ⊆ (𝑠 𝑇)))
45 sseq1 4007 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 ⊆ (𝑇 𝑈) ↔ (𝑠 𝑇) ⊆ (𝑇 𝑈)))
4644, 45anbi12d 631 . . . . . . . . . . . . 13 (𝑟 = (𝑠 𝑇) → ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) ↔ (𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈))))
47 eqeq1 2736 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 = 𝑇 ↔ (𝑠 𝑇) = 𝑇))
48 eqeq1 2736 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 = (𝑇 𝑈) ↔ (𝑠 𝑇) = (𝑇 𝑈)))
4947, 48orbi12d 917 . . . . . . . . . . . . 13 (𝑟 = (𝑠 𝑇) → ((𝑟 = 𝑇𝑟 = (𝑇 𝑈)) ↔ ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈))))
5046, 49imbi12d 344 . . . . . . . . . . . 12 (𝑟 = (𝑠 𝑇) → (((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) ↔ ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5150rspcv 3608 . . . . . . . . . . 11 ((𝑠 𝑇) ∈ 𝑆 → (∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5243, 51syl 17 . . . . . . . . . 10 ((𝜑𝑠𝑆) → (∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5352adantld 491 . . . . . . . . 9 ((𝜑𝑠𝑆) → ((𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈)))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5438, 53sylbid 239 . . . . . . . 8 ((𝜑𝑠𝑆) → (𝑇𝐶(𝑇 𝑈) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
55543adant3 1132 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇𝐶(𝑇 𝑈) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5636, 55mpd 15 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈))))
5721, 35, 56mp2and 697 . . . . 5 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))
58 ineq1 4205 . . . . . . 7 ((𝑠 𝑇) = 𝑇 → ((𝑠 𝑇) ∩ 𝑈) = (𝑇𝑈))
59 simp3l 1201 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇𝑈) ⊆ 𝑠)
601, 6, 2, 13, 18, 22, 16, 59, 24lcvexchlem2 37997 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) ∩ 𝑈) = 𝑠)
6160eqeq1d 2734 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) ∩ 𝑈) = (𝑇𝑈) ↔ 𝑠 = (𝑇𝑈)))
6258, 61imbitrid 243 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = 𝑇𝑠 = (𝑇𝑈)))
63 ineq1 4205 . . . . . . 7 ((𝑠 𝑇) = (𝑇 𝑈) → ((𝑠 𝑇) ∩ 𝑈) = ((𝑇 𝑈) ∩ 𝑈))
646lsmub2 19528 . . . . . . . . . 10 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑇 𝑈))
6519, 23, 64syl2anc 584 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈 ⊆ (𝑇 𝑈))
66 sseqin2 4215 . . . . . . . . 9 (𝑈 ⊆ (𝑇 𝑈) ↔ ((𝑇 𝑈) ∩ 𝑈) = 𝑈)
6765, 66sylib 217 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑇 𝑈) ∩ 𝑈) = 𝑈)
6860, 67eqeq12d 2748 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) ∩ 𝑈) = ((𝑇 𝑈) ∩ 𝑈) ↔ 𝑠 = 𝑈))
6963, 68imbitrid 243 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = (𝑇 𝑈) → 𝑠 = 𝑈))
7062, 69orim12d 963 . . . . 5 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))
7157, 70mpd 15 . . . 4 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈))
72713exp 1119 . . 3 (𝜑 → (𝑠𝑆 → (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈))))
7372ralrimiv 3145 . 2 (𝜑 → ∀𝑠𝑆 (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))
741lssincl 20581 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)
753, 4, 5, 74syl3anc 1371 . . 3 (𝜑 → (𝑇𝑈) ∈ 𝑆)
761, 2, 3, 75, 5lcvbr3 37985 . 2 (𝜑 → ((𝑇𝑈)𝐶𝑈 ↔ ((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑠𝑆 (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))))
7712, 73, 76mpbir2and 711 1 (𝜑 → (𝑇𝑈)𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3061  cin 3947  wss 3948  wpss 3949   class class class wbr 5148  cfv 6543  (class class class)co 7411  SubGrpcsubg 19002  LSSumclsm 19504  Abelcabl 19651  LModclmod 20475  LSubSpclss 20547  L clcv 37980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-0g 17389  df-mre 17532  df-mrc 17533  df-acs 17535  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-submnd 18674  df-grp 18824  df-minusg 18825  df-sbg 18826  df-subg 19005  df-cntz 19183  df-lsm 19506  df-cmn 19652  df-abl 19653  df-mgp 19990  df-ur 20007  df-ring 20060  df-lmod 20477  df-lss 20548  df-lcv 37981
This theorem is referenced by:  lcvexch  38001  lsatcvat3  38014
  Copyright terms: Public domain W3C validator