Step | Hyp | Ref
| Expression |
1 | | lcvexch.s |
. . . 4
⊢ 𝑆 = (LSubSp‘𝑊) |
2 | | lcvexch.c |
. . . 4
⊢ 𝐶 = ( ⋖L
‘𝑊) |
3 | | lcvexch.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | | lcvexch.t |
. . . 4
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
5 | | lcvexch.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
6 | | lcvexch.p |
. . . . . 6
⊢ ⊕ =
(LSSum‘𝑊) |
7 | 1, 6 | lsmcl 20345 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ∈ 𝑆) |
8 | 3, 4, 5, 7 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝑇 ⊕ 𝑈) ∈ 𝑆) |
9 | | lcvexch.f |
. . . 4
⊢ (𝜑 → 𝑇𝐶(𝑇 ⊕ 𝑈)) |
10 | 1, 2, 3, 4, 8, 9 | lcvpss 37038 |
. . 3
⊢ (𝜑 → 𝑇 ⊊ (𝑇 ⊕ 𝑈)) |
11 | 1, 6, 2, 3, 4, 5 | lcvexchlem1 37048 |
. . 3
⊢ (𝜑 → (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ⊊ 𝑈)) |
12 | 10, 11 | mpbid 231 |
. 2
⊢ (𝜑 → (𝑇 ∩ 𝑈) ⊊ 𝑈) |
13 | 3 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑊 ∈ LMod) |
14 | 1 | lsssssubg 20220 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑆 ⊆ (SubGrp‘𝑊)) |
16 | | simp2 1136 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑠 ∈ 𝑆) |
17 | 15, 16 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑠 ∈ (SubGrp‘𝑊)) |
18 | 4 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑇 ∈ 𝑆) |
19 | 15, 18 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑇 ∈ (SubGrp‘𝑊)) |
20 | 6 | lsmub2 19263 |
. . . . . . 7
⊢ ((𝑠 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → 𝑇 ⊆ (𝑠 ⊕ 𝑇)) |
21 | 17, 19, 20 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑇 ⊆ (𝑠 ⊕ 𝑇)) |
22 | 5 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑈 ∈ 𝑆) |
23 | 15, 22 | sseldd 3922 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑈 ∈ (SubGrp‘𝑊)) |
24 | | simp3r 1201 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑠 ⊆ 𝑈) |
25 | 6 | lsmless1 19265 |
. . . . . . . 8
⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑠 ⊆ 𝑈) → (𝑠 ⊕ 𝑇) ⊆ (𝑈 ⊕ 𝑇)) |
26 | 23, 19, 24, 25 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → (𝑠 ⊕ 𝑇) ⊆ (𝑈 ⊕ 𝑇)) |
27 | | lmodabl 20170 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
28 | 3, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ Abel) |
29 | 3, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
30 | 29, 4 | sseldd 3922 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
31 | 29, 5 | sseldd 3922 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
32 | 6 | lsmcom 19459 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
33 | 28, 30, 31, 32 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
34 | 33 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
35 | 26, 34 | sseqtrrd 3962 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → (𝑠 ⊕ 𝑇) ⊆ (𝑇 ⊕ 𝑈)) |
36 | 9 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑇𝐶(𝑇 ⊕ 𝑈)) |
37 | 1, 2, 3, 4, 8 | lcvbr3 37037 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇𝐶(𝑇 ⊕ 𝑈) ↔ (𝑇 ⊊ (𝑇 ⊕ 𝑈) ∧ ∀𝑟 ∈ 𝑆 ((𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ (𝑇 ⊕ 𝑈)) → (𝑟 = 𝑇 ∨ 𝑟 = (𝑇 ⊕ 𝑈)))))) |
38 | 37 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → (𝑇𝐶(𝑇 ⊕ 𝑈) ↔ (𝑇 ⊊ (𝑇 ⊕ 𝑈) ∧ ∀𝑟 ∈ 𝑆 ((𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ (𝑇 ⊕ 𝑈)) → (𝑟 = 𝑇 ∨ 𝑟 = (𝑇 ⊕ 𝑈)))))) |
39 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → 𝑊 ∈ LMod) |
40 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ 𝑆) |
41 | 4 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → 𝑇 ∈ 𝑆) |
42 | 1, 6 | lsmcl 20345 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝑆 ∧ 𝑇 ∈ 𝑆) → (𝑠 ⊕ 𝑇) ∈ 𝑆) |
43 | 39, 40, 41, 42 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → (𝑠 ⊕ 𝑇) ∈ 𝑆) |
44 | | sseq2 3947 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑠 ⊕ 𝑇) → (𝑇 ⊆ 𝑟 ↔ 𝑇 ⊆ (𝑠 ⊕ 𝑇))) |
45 | | sseq1 3946 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑠 ⊕ 𝑇) → (𝑟 ⊆ (𝑇 ⊕ 𝑈) ↔ (𝑠 ⊕ 𝑇) ⊆ (𝑇 ⊕ 𝑈))) |
46 | 44, 45 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑠 ⊕ 𝑇) → ((𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ (𝑇 ⊕ 𝑈)) ↔ (𝑇 ⊆ (𝑠 ⊕ 𝑇) ∧ (𝑠 ⊕ 𝑇) ⊆ (𝑇 ⊕ 𝑈)))) |
47 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑠 ⊕ 𝑇) → (𝑟 = 𝑇 ↔ (𝑠 ⊕ 𝑇) = 𝑇)) |
48 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑠 ⊕ 𝑇) → (𝑟 = (𝑇 ⊕ 𝑈) ↔ (𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈))) |
49 | 47, 48 | orbi12d 916 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑠 ⊕ 𝑇) → ((𝑟 = 𝑇 ∨ 𝑟 = (𝑇 ⊕ 𝑈)) ↔ ((𝑠 ⊕ 𝑇) = 𝑇 ∨ (𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈)))) |
50 | 46, 49 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑠 ⊕ 𝑇) → (((𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ (𝑇 ⊕ 𝑈)) → (𝑟 = 𝑇 ∨ 𝑟 = (𝑇 ⊕ 𝑈))) ↔ ((𝑇 ⊆ (𝑠 ⊕ 𝑇) ∧ (𝑠 ⊕ 𝑇) ⊆ (𝑇 ⊕ 𝑈)) → ((𝑠 ⊕ 𝑇) = 𝑇 ∨ (𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈))))) |
51 | 50 | rspcv 3557 |
. . . . . . . . . . 11
⊢ ((𝑠 ⊕ 𝑇) ∈ 𝑆 → (∀𝑟 ∈ 𝑆 ((𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ (𝑇 ⊕ 𝑈)) → (𝑟 = 𝑇 ∨ 𝑟 = (𝑇 ⊕ 𝑈))) → ((𝑇 ⊆ (𝑠 ⊕ 𝑇) ∧ (𝑠 ⊕ 𝑇) ⊆ (𝑇 ⊕ 𝑈)) → ((𝑠 ⊕ 𝑇) = 𝑇 ∨ (𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈))))) |
52 | 43, 51 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → (∀𝑟 ∈ 𝑆 ((𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ (𝑇 ⊕ 𝑈)) → (𝑟 = 𝑇 ∨ 𝑟 = (𝑇 ⊕ 𝑈))) → ((𝑇 ⊆ (𝑠 ⊕ 𝑇) ∧ (𝑠 ⊕ 𝑇) ⊆ (𝑇 ⊕ 𝑈)) → ((𝑠 ⊕ 𝑇) = 𝑇 ∨ (𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈))))) |
53 | 52 | adantld 491 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → ((𝑇 ⊊ (𝑇 ⊕ 𝑈) ∧ ∀𝑟 ∈ 𝑆 ((𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ (𝑇 ⊕ 𝑈)) → (𝑟 = 𝑇 ∨ 𝑟 = (𝑇 ⊕ 𝑈)))) → ((𝑇 ⊆ (𝑠 ⊕ 𝑇) ∧ (𝑠 ⊕ 𝑇) ⊆ (𝑇 ⊕ 𝑈)) → ((𝑠 ⊕ 𝑇) = 𝑇 ∨ (𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈))))) |
54 | 38, 53 | sylbid 239 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → (𝑇𝐶(𝑇 ⊕ 𝑈) → ((𝑇 ⊆ (𝑠 ⊕ 𝑇) ∧ (𝑠 ⊕ 𝑇) ⊆ (𝑇 ⊕ 𝑈)) → ((𝑠 ⊕ 𝑇) = 𝑇 ∨ (𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈))))) |
55 | 54 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → (𝑇𝐶(𝑇 ⊕ 𝑈) → ((𝑇 ⊆ (𝑠 ⊕ 𝑇) ∧ (𝑠 ⊕ 𝑇) ⊆ (𝑇 ⊕ 𝑈)) → ((𝑠 ⊕ 𝑇) = 𝑇 ∨ (𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈))))) |
56 | 36, 55 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → ((𝑇 ⊆ (𝑠 ⊕ 𝑇) ∧ (𝑠 ⊕ 𝑇) ⊆ (𝑇 ⊕ 𝑈)) → ((𝑠 ⊕ 𝑇) = 𝑇 ∨ (𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈)))) |
57 | 21, 35, 56 | mp2and 696 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → ((𝑠 ⊕ 𝑇) = 𝑇 ∨ (𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈))) |
58 | | ineq1 4139 |
. . . . . . 7
⊢ ((𝑠 ⊕ 𝑇) = 𝑇 → ((𝑠 ⊕ 𝑇) ∩ 𝑈) = (𝑇 ∩ 𝑈)) |
59 | | simp3l 1200 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → (𝑇 ∩ 𝑈) ⊆ 𝑠) |
60 | 1, 6, 2, 13, 18, 22, 16, 59, 24 | lcvexchlem2 37049 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → ((𝑠 ⊕ 𝑇) ∩ 𝑈) = 𝑠) |
61 | 60 | eqeq1d 2740 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → (((𝑠 ⊕ 𝑇) ∩ 𝑈) = (𝑇 ∩ 𝑈) ↔ 𝑠 = (𝑇 ∩ 𝑈))) |
62 | 58, 61 | syl5ib 243 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → ((𝑠 ⊕ 𝑇) = 𝑇 → 𝑠 = (𝑇 ∩ 𝑈))) |
63 | | ineq1 4139 |
. . . . . . 7
⊢ ((𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈) → ((𝑠 ⊕ 𝑇) ∩ 𝑈) = ((𝑇 ⊕ 𝑈) ∩ 𝑈)) |
64 | 6 | lsmub2 19263 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
65 | 19, 23, 64 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
66 | | sseqin2 4149 |
. . . . . . . . 9
⊢ (𝑈 ⊆ (𝑇 ⊕ 𝑈) ↔ ((𝑇 ⊕ 𝑈) ∩ 𝑈) = 𝑈) |
67 | 65, 66 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → ((𝑇 ⊕ 𝑈) ∩ 𝑈) = 𝑈) |
68 | 60, 67 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → (((𝑠 ⊕ 𝑇) ∩ 𝑈) = ((𝑇 ⊕ 𝑈) ∩ 𝑈) ↔ 𝑠 = 𝑈)) |
69 | 63, 68 | syl5ib 243 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → ((𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈) → 𝑠 = 𝑈)) |
70 | 62, 69 | orim12d 962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → (((𝑠 ⊕ 𝑇) = 𝑇 ∨ (𝑠 ⊕ 𝑇) = (𝑇 ⊕ 𝑈)) → (𝑠 = (𝑇 ∩ 𝑈) ∨ 𝑠 = 𝑈))) |
71 | 57, 70 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈)) → (𝑠 = (𝑇 ∩ 𝑈) ∨ 𝑠 = 𝑈)) |
72 | 71 | 3exp 1118 |
. . 3
⊢ (𝜑 → (𝑠 ∈ 𝑆 → (((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) → (𝑠 = (𝑇 ∩ 𝑈) ∨ 𝑠 = 𝑈)))) |
73 | 72 | ralrimiv 3102 |
. 2
⊢ (𝜑 → ∀𝑠 ∈ 𝑆 (((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) → (𝑠 = (𝑇 ∩ 𝑈) ∨ 𝑠 = 𝑈))) |
74 | 1 | lssincl 20227 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∩ 𝑈) ∈ 𝑆) |
75 | 3, 4, 5, 74 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝑇 ∩ 𝑈) ∈ 𝑆) |
76 | 1, 2, 3, 75, 5 | lcvbr3 37037 |
. 2
⊢ (𝜑 → ((𝑇 ∩ 𝑈)𝐶𝑈 ↔ ((𝑇 ∩ 𝑈) ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 (((𝑇 ∩ 𝑈) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) → (𝑠 = (𝑇 ∩ 𝑈) ∨ 𝑠 = 𝑈))))) |
77 | 12, 73, 76 | mpbir2and 710 |
1
⊢ (𝜑 → (𝑇 ∩ 𝑈)𝐶𝑈) |