Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem4 Structured version   Visualization version   GIF version

Theorem lcvexchlem4 39030
Description: Lemma for lcvexch 39032. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
lcvexch.f (𝜑𝑇𝐶(𝑇 𝑈))
Assertion
Ref Expression
lcvexchlem4 (𝜑 → (𝑇𝑈)𝐶𝑈)

Proof of Theorem lcvexchlem4
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvexch.s . . . 4 𝑆 = (LSubSp‘𝑊)
2 lcvexch.c . . . 4 𝐶 = ( ⋖L𝑊)
3 lcvexch.w . . . 4 (𝜑𝑊 ∈ LMod)
4 lcvexch.t . . . 4 (𝜑𝑇𝑆)
5 lcvexch.u . . . . 5 (𝜑𝑈𝑆)
6 lcvexch.p . . . . . 6 = (LSSum‘𝑊)
71, 6lsmcl 20990 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
83, 4, 5, 7syl3anc 1373 . . . 4 (𝜑 → (𝑇 𝑈) ∈ 𝑆)
9 lcvexch.f . . . 4 (𝜑𝑇𝐶(𝑇 𝑈))
101, 2, 3, 4, 8, 9lcvpss 39017 . . 3 (𝜑𝑇 ⊊ (𝑇 𝑈))
111, 6, 2, 3, 4, 5lcvexchlem1 39027 . . 3 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
1210, 11mpbid 232 . 2 (𝜑 → (𝑇𝑈) ⊊ 𝑈)
1333ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑊 ∈ LMod)
141lsssssubg 20864 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1513, 14syl 17 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑆 ⊆ (SubGrp‘𝑊))
16 simp2 1137 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠𝑆)
1715, 16sseldd 3947 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠 ∈ (SubGrp‘𝑊))
1843ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇𝑆)
1915, 18sseldd 3947 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
206lsmub2 19588 . . . . . . 7 ((𝑠 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → 𝑇 ⊆ (𝑠 𝑇))
2117, 19, 20syl2anc 584 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇 ⊆ (𝑠 𝑇))
2253ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈𝑆)
2315, 22sseldd 3947 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
24 simp3r 1203 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠𝑈)
256lsmless1 19590 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑠𝑈) → (𝑠 𝑇) ⊆ (𝑈 𝑇))
2623, 19, 24, 25syl3anc 1373 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 𝑇) ⊆ (𝑈 𝑇))
27 lmodabl 20815 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
283, 27syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Abel)
293, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
3029, 4sseldd 3947 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑊))
3129, 5sseldd 3947 . . . . . . . . 9 (𝜑𝑈 ∈ (SubGrp‘𝑊))
326lsmcom 19788 . . . . . . . . 9 ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 𝑈) = (𝑈 𝑇))
3328, 30, 31, 32syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
34333ad2ant1 1133 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
3526, 34sseqtrrd 3984 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 𝑇) ⊆ (𝑇 𝑈))
3693ad2ant1 1133 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇𝐶(𝑇 𝑈))
371, 2, 3, 4, 8lcvbr3 39016 . . . . . . . . . 10 (𝜑 → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))))))
3837adantr 480 . . . . . . . . 9 ((𝜑𝑠𝑆) → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))))))
393adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑊 ∈ LMod)
40 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑠𝑆)
414adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑇𝑆)
421, 6lsmcl 20990 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑠𝑆𝑇𝑆) → (𝑠 𝑇) ∈ 𝑆)
4339, 40, 41, 42syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 𝑇) ∈ 𝑆)
44 sseq2 3973 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑇𝑟𝑇 ⊆ (𝑠 𝑇)))
45 sseq1 3972 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 ⊆ (𝑇 𝑈) ↔ (𝑠 𝑇) ⊆ (𝑇 𝑈)))
4644, 45anbi12d 632 . . . . . . . . . . . . 13 (𝑟 = (𝑠 𝑇) → ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) ↔ (𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈))))
47 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 = 𝑇 ↔ (𝑠 𝑇) = 𝑇))
48 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 = (𝑇 𝑈) ↔ (𝑠 𝑇) = (𝑇 𝑈)))
4947, 48orbi12d 918 . . . . . . . . . . . . 13 (𝑟 = (𝑠 𝑇) → ((𝑟 = 𝑇𝑟 = (𝑇 𝑈)) ↔ ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈))))
5046, 49imbi12d 344 . . . . . . . . . . . 12 (𝑟 = (𝑠 𝑇) → (((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) ↔ ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5150rspcv 3584 . . . . . . . . . . 11 ((𝑠 𝑇) ∈ 𝑆 → (∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5243, 51syl 17 . . . . . . . . . 10 ((𝜑𝑠𝑆) → (∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5352adantld 490 . . . . . . . . 9 ((𝜑𝑠𝑆) → ((𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈)))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5438, 53sylbid 240 . . . . . . . 8 ((𝜑𝑠𝑆) → (𝑇𝐶(𝑇 𝑈) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
55543adant3 1132 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇𝐶(𝑇 𝑈) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5636, 55mpd 15 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈))))
5721, 35, 56mp2and 699 . . . . 5 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))
58 ineq1 4176 . . . . . . 7 ((𝑠 𝑇) = 𝑇 → ((𝑠 𝑇) ∩ 𝑈) = (𝑇𝑈))
59 simp3l 1202 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇𝑈) ⊆ 𝑠)
601, 6, 2, 13, 18, 22, 16, 59, 24lcvexchlem2 39028 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) ∩ 𝑈) = 𝑠)
6160eqeq1d 2731 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) ∩ 𝑈) = (𝑇𝑈) ↔ 𝑠 = (𝑇𝑈)))
6258, 61imbitrid 244 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = 𝑇𝑠 = (𝑇𝑈)))
63 ineq1 4176 . . . . . . 7 ((𝑠 𝑇) = (𝑇 𝑈) → ((𝑠 𝑇) ∩ 𝑈) = ((𝑇 𝑈) ∩ 𝑈))
646lsmub2 19588 . . . . . . . . . 10 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑇 𝑈))
6519, 23, 64syl2anc 584 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈 ⊆ (𝑇 𝑈))
66 sseqin2 4186 . . . . . . . . 9 (𝑈 ⊆ (𝑇 𝑈) ↔ ((𝑇 𝑈) ∩ 𝑈) = 𝑈)
6765, 66sylib 218 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑇 𝑈) ∩ 𝑈) = 𝑈)
6860, 67eqeq12d 2745 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) ∩ 𝑈) = ((𝑇 𝑈) ∩ 𝑈) ↔ 𝑠 = 𝑈))
6963, 68imbitrid 244 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = (𝑇 𝑈) → 𝑠 = 𝑈))
7062, 69orim12d 966 . . . . 5 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))
7157, 70mpd 15 . . . 4 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈))
72713exp 1119 . . 3 (𝜑 → (𝑠𝑆 → (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈))))
7372ralrimiv 3124 . 2 (𝜑 → ∀𝑠𝑆 (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))
741lssincl 20871 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)
753, 4, 5, 74syl3anc 1373 . . 3 (𝜑 → (𝑇𝑈) ∈ 𝑆)
761, 2, 3, 75, 5lcvbr3 39016 . 2 (𝜑 → ((𝑇𝑈)𝐶𝑈 ↔ ((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑠𝑆 (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))))
7712, 73, 76mpbir2and 713 1 (𝜑 → (𝑇𝑈)𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cin 3913  wss 3914  wpss 3915   class class class wbr 5107  cfv 6511  (class class class)co 7387  SubGrpcsubg 19052  LSSumclsm 19564  Abelcabl 19711  LModclmod 20766  LSubSpclss 20837  L clcv 39011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144  df-lmod 20768  df-lss 20838  df-lcv 39012
This theorem is referenced by:  lcvexch  39032  lsatcvat3  39045
  Copyright terms: Public domain W3C validator