Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem4 Structured version   Visualization version   GIF version

Theorem lcvexchlem4 36295
Description: Lemma for lcvexch 36297. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
lcvexch.f (𝜑𝑇𝐶(𝑇 𝑈))
Assertion
Ref Expression
lcvexchlem4 (𝜑 → (𝑇𝑈)𝐶𝑈)

Proof of Theorem lcvexchlem4
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvexch.s . . . 4 𝑆 = (LSubSp‘𝑊)
2 lcvexch.c . . . 4 𝐶 = ( ⋖L𝑊)
3 lcvexch.w . . . 4 (𝜑𝑊 ∈ LMod)
4 lcvexch.t . . . 4 (𝜑𝑇𝑆)
5 lcvexch.u . . . . 5 (𝜑𝑈𝑆)
6 lcvexch.p . . . . . 6 = (LSSum‘𝑊)
71, 6lsmcl 19846 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
83, 4, 5, 7syl3anc 1368 . . . 4 (𝜑 → (𝑇 𝑈) ∈ 𝑆)
9 lcvexch.f . . . 4 (𝜑𝑇𝐶(𝑇 𝑈))
101, 2, 3, 4, 8, 9lcvpss 36282 . . 3 (𝜑𝑇 ⊊ (𝑇 𝑈))
111, 6, 2, 3, 4, 5lcvexchlem1 36292 . . 3 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
1210, 11mpbid 235 . 2 (𝜑 → (𝑇𝑈) ⊊ 𝑈)
1333ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑊 ∈ LMod)
141lsssssubg 19721 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1513, 14syl 17 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑆 ⊆ (SubGrp‘𝑊))
16 simp2 1134 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠𝑆)
1715, 16sseldd 3943 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠 ∈ (SubGrp‘𝑊))
1843ad2ant1 1130 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇𝑆)
1915, 18sseldd 3943 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
206lsmub2 18774 . . . . . . 7 ((𝑠 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → 𝑇 ⊆ (𝑠 𝑇))
2117, 19, 20syl2anc 587 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇 ⊆ (𝑠 𝑇))
2253ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈𝑆)
2315, 22sseldd 3943 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
24 simp3r 1199 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠𝑈)
256lsmless1 18776 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑠𝑈) → (𝑠 𝑇) ⊆ (𝑈 𝑇))
2623, 19, 24, 25syl3anc 1368 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 𝑇) ⊆ (𝑈 𝑇))
27 lmodabl 19672 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
283, 27syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Abel)
293, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
3029, 4sseldd 3943 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑊))
3129, 5sseldd 3943 . . . . . . . . 9 (𝜑𝑈 ∈ (SubGrp‘𝑊))
326lsmcom 18969 . . . . . . . . 9 ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 𝑈) = (𝑈 𝑇))
3328, 30, 31, 32syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
34333ad2ant1 1130 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
3526, 34sseqtrrd 3983 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 𝑇) ⊆ (𝑇 𝑈))
3693ad2ant1 1130 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇𝐶(𝑇 𝑈))
371, 2, 3, 4, 8lcvbr3 36281 . . . . . . . . . 10 (𝜑 → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))))))
3837adantr 484 . . . . . . . . 9 ((𝜑𝑠𝑆) → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))))))
393adantr 484 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑊 ∈ LMod)
40 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑠𝑆)
414adantr 484 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑇𝑆)
421, 6lsmcl 19846 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑠𝑆𝑇𝑆) → (𝑠 𝑇) ∈ 𝑆)
4339, 40, 41, 42syl3anc 1368 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 𝑇) ∈ 𝑆)
44 sseq2 3968 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑇𝑟𝑇 ⊆ (𝑠 𝑇)))
45 sseq1 3967 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 ⊆ (𝑇 𝑈) ↔ (𝑠 𝑇) ⊆ (𝑇 𝑈)))
4644, 45anbi12d 633 . . . . . . . . . . . . 13 (𝑟 = (𝑠 𝑇) → ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) ↔ (𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈))))
47 eqeq1 2826 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 = 𝑇 ↔ (𝑠 𝑇) = 𝑇))
48 eqeq1 2826 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 = (𝑇 𝑈) ↔ (𝑠 𝑇) = (𝑇 𝑈)))
4947, 48orbi12d 916 . . . . . . . . . . . . 13 (𝑟 = (𝑠 𝑇) → ((𝑟 = 𝑇𝑟 = (𝑇 𝑈)) ↔ ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈))))
5046, 49imbi12d 348 . . . . . . . . . . . 12 (𝑟 = (𝑠 𝑇) → (((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) ↔ ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5150rspcv 3593 . . . . . . . . . . 11 ((𝑠 𝑇) ∈ 𝑆 → (∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5243, 51syl 17 . . . . . . . . . 10 ((𝜑𝑠𝑆) → (∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5352adantld 494 . . . . . . . . 9 ((𝜑𝑠𝑆) → ((𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈)))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5438, 53sylbid 243 . . . . . . . 8 ((𝜑𝑠𝑆) → (𝑇𝐶(𝑇 𝑈) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
55543adant3 1129 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇𝐶(𝑇 𝑈) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5636, 55mpd 15 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈))))
5721, 35, 56mp2and 698 . . . . 5 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))
58 ineq1 4155 . . . . . . 7 ((𝑠 𝑇) = 𝑇 → ((𝑠 𝑇) ∩ 𝑈) = (𝑇𝑈))
59 simp3l 1198 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇𝑈) ⊆ 𝑠)
601, 6, 2, 13, 18, 22, 16, 59, 24lcvexchlem2 36293 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) ∩ 𝑈) = 𝑠)
6160eqeq1d 2824 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) ∩ 𝑈) = (𝑇𝑈) ↔ 𝑠 = (𝑇𝑈)))
6258, 61syl5ib 247 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = 𝑇𝑠 = (𝑇𝑈)))
63 ineq1 4155 . . . . . . 7 ((𝑠 𝑇) = (𝑇 𝑈) → ((𝑠 𝑇) ∩ 𝑈) = ((𝑇 𝑈) ∩ 𝑈))
646lsmub2 18774 . . . . . . . . . 10 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑇 𝑈))
6519, 23, 64syl2anc 587 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈 ⊆ (𝑇 𝑈))
66 sseqin2 4166 . . . . . . . . 9 (𝑈 ⊆ (𝑇 𝑈) ↔ ((𝑇 𝑈) ∩ 𝑈) = 𝑈)
6765, 66sylib 221 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑇 𝑈) ∩ 𝑈) = 𝑈)
6860, 67eqeq12d 2838 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) ∩ 𝑈) = ((𝑇 𝑈) ∩ 𝑈) ↔ 𝑠 = 𝑈))
6963, 68syl5ib 247 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = (𝑇 𝑈) → 𝑠 = 𝑈))
7062, 69orim12d 962 . . . . 5 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))
7157, 70mpd 15 . . . 4 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈))
72713exp 1116 . . 3 (𝜑 → (𝑠𝑆 → (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈))))
7372ralrimiv 3173 . 2 (𝜑 → ∀𝑠𝑆 (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))
741lssincl 19728 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)
753, 4, 5, 74syl3anc 1368 . . 3 (𝜑 → (𝑇𝑈) ∈ 𝑆)
761, 2, 3, 75, 5lcvbr3 36281 . 2 (𝜑 → ((𝑇𝑈)𝐶𝑈 ↔ ((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑠𝑆 (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))))
7712, 73, 76mpbir2and 712 1 (𝜑 → (𝑇𝑈)𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2114  wral 3130  cin 3907  wss 3908  wpss 3909   class class class wbr 5042  cfv 6334  (class class class)co 7140  SubGrpcsubg 18264  LSSumclsm 18750  Abelcabl 18898  LModclmod 19625  LSubSpclss 19694  L clcv 36276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-0g 16706  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-grp 18097  df-minusg 18098  df-sbg 18099  df-subg 18267  df-cntz 18438  df-lsm 18752  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-lmod 19627  df-lss 19695  df-lcv 36277
This theorem is referenced by:  lcvexch  36297  lsatcvat3  36310
  Copyright terms: Public domain W3C validator