Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem4 Structured version   Visualization version   GIF version

Theorem lcvexchlem4 36167
Description: Lemma for lcvexch 36169. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
lcvexch.f (𝜑𝑇𝐶(𝑇 𝑈))
Assertion
Ref Expression
lcvexchlem4 (𝜑 → (𝑇𝑈)𝐶𝑈)

Proof of Theorem lcvexchlem4
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvexch.s . . . 4 𝑆 = (LSubSp‘𝑊)
2 lcvexch.c . . . 4 𝐶 = ( ⋖L𝑊)
3 lcvexch.w . . . 4 (𝜑𝑊 ∈ LMod)
4 lcvexch.t . . . 4 (𝜑𝑇𝑆)
5 lcvexch.u . . . . 5 (𝜑𝑈𝑆)
6 lcvexch.p . . . . . 6 = (LSSum‘𝑊)
71, 6lsmcl 19849 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
83, 4, 5, 7syl3anc 1367 . . . 4 (𝜑 → (𝑇 𝑈) ∈ 𝑆)
9 lcvexch.f . . . 4 (𝜑𝑇𝐶(𝑇 𝑈))
101, 2, 3, 4, 8, 9lcvpss 36154 . . 3 (𝜑𝑇 ⊊ (𝑇 𝑈))
111, 6, 2, 3, 4, 5lcvexchlem1 36164 . . 3 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
1210, 11mpbid 234 . 2 (𝜑 → (𝑇𝑈) ⊊ 𝑈)
1333ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑊 ∈ LMod)
141lsssssubg 19724 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1513, 14syl 17 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑆 ⊆ (SubGrp‘𝑊))
16 simp2 1133 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠𝑆)
1715, 16sseldd 3967 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠 ∈ (SubGrp‘𝑊))
1843ad2ant1 1129 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇𝑆)
1915, 18sseldd 3967 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
206lsmub2 18777 . . . . . . 7 ((𝑠 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → 𝑇 ⊆ (𝑠 𝑇))
2117, 19, 20syl2anc 586 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇 ⊆ (𝑠 𝑇))
2253ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈𝑆)
2315, 22sseldd 3967 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
24 simp3r 1198 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠𝑈)
256lsmless1 18779 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑠𝑈) → (𝑠 𝑇) ⊆ (𝑈 𝑇))
2623, 19, 24, 25syl3anc 1367 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 𝑇) ⊆ (𝑈 𝑇))
27 lmodabl 19675 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
283, 27syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Abel)
293, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
3029, 4sseldd 3967 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑊))
3129, 5sseldd 3967 . . . . . . . . 9 (𝜑𝑈 ∈ (SubGrp‘𝑊))
326lsmcom 18972 . . . . . . . . 9 ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 𝑈) = (𝑈 𝑇))
3328, 30, 31, 32syl3anc 1367 . . . . . . . 8 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
34333ad2ant1 1129 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
3526, 34sseqtrrd 4007 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 𝑇) ⊆ (𝑇 𝑈))
3693ad2ant1 1129 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇𝐶(𝑇 𝑈))
371, 2, 3, 4, 8lcvbr3 36153 . . . . . . . . . 10 (𝜑 → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))))))
3837adantr 483 . . . . . . . . 9 ((𝜑𝑠𝑆) → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))))))
393adantr 483 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑊 ∈ LMod)
40 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑠𝑆)
414adantr 483 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑇𝑆)
421, 6lsmcl 19849 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑠𝑆𝑇𝑆) → (𝑠 𝑇) ∈ 𝑆)
4339, 40, 41, 42syl3anc 1367 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 𝑇) ∈ 𝑆)
44 sseq2 3992 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑇𝑟𝑇 ⊆ (𝑠 𝑇)))
45 sseq1 3991 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 ⊆ (𝑇 𝑈) ↔ (𝑠 𝑇) ⊆ (𝑇 𝑈)))
4644, 45anbi12d 632 . . . . . . . . . . . . 13 (𝑟 = (𝑠 𝑇) → ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) ↔ (𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈))))
47 eqeq1 2825 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 = 𝑇 ↔ (𝑠 𝑇) = 𝑇))
48 eqeq1 2825 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 = (𝑇 𝑈) ↔ (𝑠 𝑇) = (𝑇 𝑈)))
4947, 48orbi12d 915 . . . . . . . . . . . . 13 (𝑟 = (𝑠 𝑇) → ((𝑟 = 𝑇𝑟 = (𝑇 𝑈)) ↔ ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈))))
5046, 49imbi12d 347 . . . . . . . . . . . 12 (𝑟 = (𝑠 𝑇) → (((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) ↔ ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5150rspcv 3617 . . . . . . . . . . 11 ((𝑠 𝑇) ∈ 𝑆 → (∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5243, 51syl 17 . . . . . . . . . 10 ((𝜑𝑠𝑆) → (∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5352adantld 493 . . . . . . . . 9 ((𝜑𝑠𝑆) → ((𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈)))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5438, 53sylbid 242 . . . . . . . 8 ((𝜑𝑠𝑆) → (𝑇𝐶(𝑇 𝑈) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
55543adant3 1128 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇𝐶(𝑇 𝑈) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5636, 55mpd 15 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈))))
5721, 35, 56mp2and 697 . . . . 5 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))
58 ineq1 4180 . . . . . . 7 ((𝑠 𝑇) = 𝑇 → ((𝑠 𝑇) ∩ 𝑈) = (𝑇𝑈))
59 simp3l 1197 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇𝑈) ⊆ 𝑠)
601, 6, 2, 13, 18, 22, 16, 59, 24lcvexchlem2 36165 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) ∩ 𝑈) = 𝑠)
6160eqeq1d 2823 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) ∩ 𝑈) = (𝑇𝑈) ↔ 𝑠 = (𝑇𝑈)))
6258, 61syl5ib 246 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = 𝑇𝑠 = (𝑇𝑈)))
63 ineq1 4180 . . . . . . 7 ((𝑠 𝑇) = (𝑇 𝑈) → ((𝑠 𝑇) ∩ 𝑈) = ((𝑇 𝑈) ∩ 𝑈))
646lsmub2 18777 . . . . . . . . . 10 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑇 𝑈))
6519, 23, 64syl2anc 586 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈 ⊆ (𝑇 𝑈))
66 sseqin2 4191 . . . . . . . . 9 (𝑈 ⊆ (𝑇 𝑈) ↔ ((𝑇 𝑈) ∩ 𝑈) = 𝑈)
6765, 66sylib 220 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑇 𝑈) ∩ 𝑈) = 𝑈)
6860, 67eqeq12d 2837 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) ∩ 𝑈) = ((𝑇 𝑈) ∩ 𝑈) ↔ 𝑠 = 𝑈))
6963, 68syl5ib 246 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = (𝑇 𝑈) → 𝑠 = 𝑈))
7062, 69orim12d 961 . . . . 5 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))
7157, 70mpd 15 . . . 4 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈))
72713exp 1115 . . 3 (𝜑 → (𝑠𝑆 → (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈))))
7372ralrimiv 3181 . 2 (𝜑 → ∀𝑠𝑆 (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))
741lssincl 19731 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)
753, 4, 5, 74syl3anc 1367 . . 3 (𝜑 → (𝑇𝑈) ∈ 𝑆)
761, 2, 3, 75, 5lcvbr3 36153 . 2 (𝜑 → ((𝑇𝑈)𝐶𝑈 ↔ ((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑠𝑆 (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))))
7712, 73, 76mpbir2and 711 1 (𝜑 → (𝑇𝑈)𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wral 3138  cin 3934  wss 3935  wpss 3936   class class class wbr 5058  cfv 6349  (class class class)co 7150  SubGrpcsubg 18267  LSSumclsm 18753  Abelcabl 18901  LModclmod 19628  LSubSpclss 19697  L clcv 36148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-lsm 18755  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-lss 19698  df-lcv 36149
This theorem is referenced by:  lcvexch  36169  lsatcvat3  36182
  Copyright terms: Public domain W3C validator