Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem5 Structured version   Visualization version   GIF version

Theorem lcvexchlem5 37500
Description: Lemma for lcvexch 37501. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
lcvexch.g (𝜑 → (𝑇𝑈)𝐶𝑈)
Assertion
Ref Expression
lcvexchlem5 (𝜑𝑇𝐶(𝑇 𝑈))

Proof of Theorem lcvexchlem5
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvexch.s . . . 4 𝑆 = (LSubSp‘𝑊)
2 lcvexch.c . . . 4 𝐶 = ( ⋖L𝑊)
3 lcvexch.w . . . 4 (𝜑𝑊 ∈ LMod)
4 lcvexch.t . . . . 5 (𝜑𝑇𝑆)
5 lcvexch.u . . . . 5 (𝜑𝑈𝑆)
61lssincl 20426 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)
73, 4, 5, 6syl3anc 1371 . . . 4 (𝜑 → (𝑇𝑈) ∈ 𝑆)
8 lcvexch.g . . . 4 (𝜑 → (𝑇𝑈)𝐶𝑈)
91, 2, 3, 7, 5, 8lcvpss 37486 . . 3 (𝜑 → (𝑇𝑈) ⊊ 𝑈)
10 lcvexch.p . . . 4 = (LSSum‘𝑊)
111, 10, 2, 3, 4, 5lcvexchlem1 37496 . . 3 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
129, 11mpbird 256 . 2 (𝜑𝑇 ⊊ (𝑇 𝑈))
13 simp3l 1201 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑇𝑠)
1413ssrind 4195 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑇𝑈) ⊆ (𝑠𝑈))
15 inss2 4189 . . . . . . 7 (𝑠𝑈) ⊆ 𝑈
1614, 15jctir 521 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈))
1783ad2ant1 1133 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑇𝑈)𝐶𝑈)
181, 2, 3, 7, 5lcvbr3 37485 . . . . . . . . . 10 (𝜑 → ((𝑇𝑈)𝐶𝑈 ↔ ((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)))))
1918adantr 481 . . . . . . . . 9 ((𝜑𝑠𝑆) → ((𝑇𝑈)𝐶𝑈 ↔ ((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)))))
203adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑊 ∈ LMod)
21 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑠𝑆)
225adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑈𝑆)
231lssincl 20426 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑠𝑆𝑈𝑆) → (𝑠𝑈) ∈ 𝑆)
2420, 21, 22, 23syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠𝑈) ∈ 𝑆)
25 sseq2 3970 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → ((𝑇𝑈) ⊆ 𝑟 ↔ (𝑇𝑈) ⊆ (𝑠𝑈)))
26 sseq1 3969 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → (𝑟𝑈 ↔ (𝑠𝑈) ⊆ 𝑈))
2725, 26anbi12d 631 . . . . . . . . . . . . 13 (𝑟 = (𝑠𝑈) → (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) ↔ ((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈)))
28 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → (𝑟 = (𝑇𝑈) ↔ (𝑠𝑈) = (𝑇𝑈)))
29 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → (𝑟 = 𝑈 ↔ (𝑠𝑈) = 𝑈))
3028, 29orbi12d 917 . . . . . . . . . . . . 13 (𝑟 = (𝑠𝑈) → ((𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈) ↔ ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈)))
3127, 30imbi12d 344 . . . . . . . . . . . 12 (𝑟 = (𝑠𝑈) → ((((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)) ↔ (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3231rspcv 3577 . . . . . . . . . . 11 ((𝑠𝑈) ∈ 𝑆 → (∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3324, 32syl 17 . . . . . . . . . 10 ((𝜑𝑠𝑆) → (∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3433adantld 491 . . . . . . . . 9 ((𝜑𝑠𝑆) → (((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈))) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3519, 34sylbid 239 . . . . . . . 8 ((𝜑𝑠𝑆) → ((𝑇𝑈)𝐶𝑈 → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
36353adant3 1132 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑇𝑈)𝐶𝑈 → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3717, 36mpd 15 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈)))
3816, 37mpd 15 . . . . 5 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))
39 oveq1 7364 . . . . . . 7 ((𝑠𝑈) = (𝑇𝑈) → ((𝑠𝑈) 𝑇) = ((𝑇𝑈) 𝑇))
4033ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑊 ∈ LMod)
4143ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑇𝑆)
4253ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑈𝑆)
43 simp2 1137 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑠𝑆)
44 simp3r 1202 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑠 ⊆ (𝑇 𝑈))
451, 10, 2, 40, 41, 42, 43, 13, 44lcvexchlem3 37498 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) 𝑇) = 𝑠)
461lsssssubg 20419 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
473, 46syl 17 . . . . . . . . . . 11 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
4847, 7sseldd 3945 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ∈ (SubGrp‘𝑊))
4947, 4sseldd 3945 . . . . . . . . . 10 (𝜑𝑇 ∈ (SubGrp‘𝑊))
50 inss1 4188 . . . . . . . . . . 11 (𝑇𝑈) ⊆ 𝑇
5150a1i 11 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
5210lsmss1 19447 . . . . . . . . . 10 (((𝑇𝑈) ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝑇𝑈) 𝑇) = 𝑇)
5348, 49, 51, 52syl3anc 1371 . . . . . . . . 9 (𝜑 → ((𝑇𝑈) 𝑇) = 𝑇)
54533ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑇𝑈) 𝑇) = 𝑇)
5545, 54eqeq12d 2752 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑠𝑈) 𝑇) = ((𝑇𝑈) 𝑇) ↔ 𝑠 = 𝑇))
5639, 55imbitrid 243 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) = (𝑇𝑈) → 𝑠 = 𝑇))
57 oveq1 7364 . . . . . . 7 ((𝑠𝑈) = 𝑈 → ((𝑠𝑈) 𝑇) = (𝑈 𝑇))
58 lmodabl 20369 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
593, 58syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ Abel)
6047, 5sseldd 3945 . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝑊))
6110lsmcom 19636 . . . . . . . . . 10 ((𝑊 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → (𝑈 𝑇) = (𝑇 𝑈))
6259, 60, 49, 61syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝑈 𝑇) = (𝑇 𝑈))
63623ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑈 𝑇) = (𝑇 𝑈))
6445, 63eqeq12d 2752 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑠𝑈) 𝑇) = (𝑈 𝑇) ↔ 𝑠 = (𝑇 𝑈)))
6557, 64imbitrid 243 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) = 𝑈𝑠 = (𝑇 𝑈)))
6656, 65orim12d 963 . . . . 5 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈))))
6738, 66mpd 15 . . . 4 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈)))
68673exp 1119 . . 3 (𝜑 → (𝑠𝑆 → ((𝑇𝑠𝑠 ⊆ (𝑇 𝑈)) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈)))))
6968ralrimiv 3142 . 2 (𝜑 → ∀𝑠𝑆 ((𝑇𝑠𝑠 ⊆ (𝑇 𝑈)) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈))))
701, 10lsmcl 20544 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
713, 4, 5, 70syl3anc 1371 . . 3 (𝜑 → (𝑇 𝑈) ∈ 𝑆)
721, 2, 3, 4, 71lcvbr3 37485 . 2 (𝜑 → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠 ⊆ (𝑇 𝑈)) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈))))))
7312, 69, 72mpbir2and 711 1 (𝜑𝑇𝐶(𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3064  cin 3909  wss 3910  wpss 3911   class class class wbr 5105  cfv 6496  (class class class)co 7357  SubGrpcsubg 18922  LSSumclsm 19416  Abelcabl 19563  LModclmod 20322  LSubSpclss 20392  L clcv 37480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-oppg 19124  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393  df-lcv 37481
This theorem is referenced by:  lcvexch  37501
  Copyright terms: Public domain W3C validator