Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem5 Structured version   Visualization version   GIF version

Theorem lcvexchlem5 39056
Description: Lemma for lcvexch 39057. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
lcvexch.g (𝜑 → (𝑇𝑈)𝐶𝑈)
Assertion
Ref Expression
lcvexchlem5 (𝜑𝑇𝐶(𝑇 𝑈))

Proof of Theorem lcvexchlem5
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvexch.s . . . 4 𝑆 = (LSubSp‘𝑊)
2 lcvexch.c . . . 4 𝐶 = ( ⋖L𝑊)
3 lcvexch.w . . . 4 (𝜑𝑊 ∈ LMod)
4 lcvexch.t . . . . 5 (𝜑𝑇𝑆)
5 lcvexch.u . . . . 5 (𝜑𝑈𝑆)
61lssincl 20891 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)
73, 4, 5, 6syl3anc 1373 . . . 4 (𝜑 → (𝑇𝑈) ∈ 𝑆)
8 lcvexch.g . . . 4 (𝜑 → (𝑇𝑈)𝐶𝑈)
91, 2, 3, 7, 5, 8lcvpss 39042 . . 3 (𝜑 → (𝑇𝑈) ⊊ 𝑈)
10 lcvexch.p . . . 4 = (LSSum‘𝑊)
111, 10, 2, 3, 4, 5lcvexchlem1 39052 . . 3 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
129, 11mpbird 257 . 2 (𝜑𝑇 ⊊ (𝑇 𝑈))
13 simp3l 1202 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑇𝑠)
1413ssrind 4192 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑇𝑈) ⊆ (𝑠𝑈))
15 inss2 4186 . . . . . . 7 (𝑠𝑈) ⊆ 𝑈
1614, 15jctir 520 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈))
1783ad2ant1 1133 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑇𝑈)𝐶𝑈)
181, 2, 3, 7, 5lcvbr3 39041 . . . . . . . . . 10 (𝜑 → ((𝑇𝑈)𝐶𝑈 ↔ ((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)))))
1918adantr 480 . . . . . . . . 9 ((𝜑𝑠𝑆) → ((𝑇𝑈)𝐶𝑈 ↔ ((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)))))
203adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑊 ∈ LMod)
21 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑠𝑆)
225adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑈𝑆)
231lssincl 20891 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑠𝑆𝑈𝑆) → (𝑠𝑈) ∈ 𝑆)
2420, 21, 22, 23syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠𝑈) ∈ 𝑆)
25 sseq2 3959 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → ((𝑇𝑈) ⊆ 𝑟 ↔ (𝑇𝑈) ⊆ (𝑠𝑈)))
26 sseq1 3958 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → (𝑟𝑈 ↔ (𝑠𝑈) ⊆ 𝑈))
2725, 26anbi12d 632 . . . . . . . . . . . . 13 (𝑟 = (𝑠𝑈) → (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) ↔ ((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈)))
28 eqeq1 2734 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → (𝑟 = (𝑇𝑈) ↔ (𝑠𝑈) = (𝑇𝑈)))
29 eqeq1 2734 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → (𝑟 = 𝑈 ↔ (𝑠𝑈) = 𝑈))
3028, 29orbi12d 918 . . . . . . . . . . . . 13 (𝑟 = (𝑠𝑈) → ((𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈) ↔ ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈)))
3127, 30imbi12d 344 . . . . . . . . . . . 12 (𝑟 = (𝑠𝑈) → ((((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)) ↔ (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3231rspcv 3571 . . . . . . . . . . 11 ((𝑠𝑈) ∈ 𝑆 → (∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3324, 32syl 17 . . . . . . . . . 10 ((𝜑𝑠𝑆) → (∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3433adantld 490 . . . . . . . . 9 ((𝜑𝑠𝑆) → (((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈))) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3519, 34sylbid 240 . . . . . . . 8 ((𝜑𝑠𝑆) → ((𝑇𝑈)𝐶𝑈 → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
36353adant3 1132 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑇𝑈)𝐶𝑈 → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3717, 36mpd 15 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈)))
3816, 37mpd 15 . . . . 5 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))
39 oveq1 7348 . . . . . . 7 ((𝑠𝑈) = (𝑇𝑈) → ((𝑠𝑈) 𝑇) = ((𝑇𝑈) 𝑇))
4033ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑊 ∈ LMod)
4143ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑇𝑆)
4253ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑈𝑆)
43 simp2 1137 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑠𝑆)
44 simp3r 1203 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑠 ⊆ (𝑇 𝑈))
451, 10, 2, 40, 41, 42, 43, 13, 44lcvexchlem3 39054 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) 𝑇) = 𝑠)
461lsssssubg 20884 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
473, 46syl 17 . . . . . . . . . . 11 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
4847, 7sseldd 3933 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ∈ (SubGrp‘𝑊))
4947, 4sseldd 3933 . . . . . . . . . 10 (𝜑𝑇 ∈ (SubGrp‘𝑊))
50 inss1 4185 . . . . . . . . . . 11 (𝑇𝑈) ⊆ 𝑇
5150a1i 11 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
5210lsmss1 19570 . . . . . . . . . 10 (((𝑇𝑈) ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝑇𝑈) 𝑇) = 𝑇)
5348, 49, 51, 52syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝑇𝑈) 𝑇) = 𝑇)
54533ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑇𝑈) 𝑇) = 𝑇)
5545, 54eqeq12d 2746 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑠𝑈) 𝑇) = ((𝑇𝑈) 𝑇) ↔ 𝑠 = 𝑇))
5639, 55imbitrid 244 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) = (𝑇𝑈) → 𝑠 = 𝑇))
57 oveq1 7348 . . . . . . 7 ((𝑠𝑈) = 𝑈 → ((𝑠𝑈) 𝑇) = (𝑈 𝑇))
58 lmodabl 20835 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
593, 58syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ Abel)
6047, 5sseldd 3933 . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝑊))
6110lsmcom 19763 . . . . . . . . . 10 ((𝑊 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → (𝑈 𝑇) = (𝑇 𝑈))
6259, 60, 49, 61syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑈 𝑇) = (𝑇 𝑈))
63623ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑈 𝑇) = (𝑇 𝑈))
6445, 63eqeq12d 2746 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑠𝑈) 𝑇) = (𝑈 𝑇) ↔ 𝑠 = (𝑇 𝑈)))
6557, 64imbitrid 244 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) = 𝑈𝑠 = (𝑇 𝑈)))
6656, 65orim12d 966 . . . . 5 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈))))
6738, 66mpd 15 . . . 4 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈)))
68673exp 1119 . . 3 (𝜑 → (𝑠𝑆 → ((𝑇𝑠𝑠 ⊆ (𝑇 𝑈)) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈)))))
6968ralrimiv 3121 . 2 (𝜑 → ∀𝑠𝑆 ((𝑇𝑠𝑠 ⊆ (𝑇 𝑈)) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈))))
701, 10lsmcl 21010 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
713, 4, 5, 70syl3anc 1373 . . 3 (𝜑 → (𝑇 𝑈) ∈ 𝑆)
721, 2, 3, 4, 71lcvbr3 39041 . 2 (𝜑 → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠 ⊆ (𝑇 𝑈)) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈))))))
7312, 69, 72mpbir2and 713 1 (𝜑𝑇𝐶(𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2110  wral 3045  cin 3899  wss 3900  wpss 3901   class class class wbr 5089  cfv 6477  (class class class)co 7341  SubGrpcsubg 19025  LSSumclsm 19539  Abelcabl 19686  LModclmod 20786  LSubSpclss 20857  L clcv 39036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-0g 17337  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cntz 19222  df-oppg 19251  df-lsm 19541  df-cmn 19687  df-abl 19688  df-mgp 20052  df-ur 20093  df-ring 20146  df-lmod 20788  df-lss 20858  df-lcv 39037
This theorem is referenced by:  lcvexch  39057
  Copyright terms: Public domain W3C validator