Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem5 Structured version   Visualization version   GIF version

Theorem lcvexchlem5 39016
Description: Lemma for lcvexch 39017. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
lcvexch.g (𝜑 → (𝑇𝑈)𝐶𝑈)
Assertion
Ref Expression
lcvexchlem5 (𝜑𝑇𝐶(𝑇 𝑈))

Proof of Theorem lcvexchlem5
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvexch.s . . . 4 𝑆 = (LSubSp‘𝑊)
2 lcvexch.c . . . 4 𝐶 = ( ⋖L𝑊)
3 lcvexch.w . . . 4 (𝜑𝑊 ∈ LMod)
4 lcvexch.t . . . . 5 (𝜑𝑇𝑆)
5 lcvexch.u . . . . 5 (𝜑𝑈𝑆)
61lssincl 20886 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)
73, 4, 5, 6syl3anc 1373 . . . 4 (𝜑 → (𝑇𝑈) ∈ 𝑆)
8 lcvexch.g . . . 4 (𝜑 → (𝑇𝑈)𝐶𝑈)
91, 2, 3, 7, 5, 8lcvpss 39002 . . 3 (𝜑 → (𝑇𝑈) ⊊ 𝑈)
10 lcvexch.p . . . 4 = (LSSum‘𝑊)
111, 10, 2, 3, 4, 5lcvexchlem1 39012 . . 3 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
129, 11mpbird 257 . 2 (𝜑𝑇 ⊊ (𝑇 𝑈))
13 simp3l 1202 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑇𝑠)
1413ssrind 4197 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑇𝑈) ⊆ (𝑠𝑈))
15 inss2 4191 . . . . . . 7 (𝑠𝑈) ⊆ 𝑈
1614, 15jctir 520 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈))
1783ad2ant1 1133 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑇𝑈)𝐶𝑈)
181, 2, 3, 7, 5lcvbr3 39001 . . . . . . . . . 10 (𝜑 → ((𝑇𝑈)𝐶𝑈 ↔ ((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)))))
1918adantr 480 . . . . . . . . 9 ((𝜑𝑠𝑆) → ((𝑇𝑈)𝐶𝑈 ↔ ((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)))))
203adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑊 ∈ LMod)
21 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑠𝑆)
225adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑈𝑆)
231lssincl 20886 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑠𝑆𝑈𝑆) → (𝑠𝑈) ∈ 𝑆)
2420, 21, 22, 23syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠𝑈) ∈ 𝑆)
25 sseq2 3964 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → ((𝑇𝑈) ⊆ 𝑟 ↔ (𝑇𝑈) ⊆ (𝑠𝑈)))
26 sseq1 3963 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → (𝑟𝑈 ↔ (𝑠𝑈) ⊆ 𝑈))
2725, 26anbi12d 632 . . . . . . . . . . . . 13 (𝑟 = (𝑠𝑈) → (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) ↔ ((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈)))
28 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → (𝑟 = (𝑇𝑈) ↔ (𝑠𝑈) = (𝑇𝑈)))
29 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑟 = (𝑠𝑈) → (𝑟 = 𝑈 ↔ (𝑠𝑈) = 𝑈))
3028, 29orbi12d 918 . . . . . . . . . . . . 13 (𝑟 = (𝑠𝑈) → ((𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈) ↔ ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈)))
3127, 30imbi12d 344 . . . . . . . . . . . 12 (𝑟 = (𝑠𝑈) → ((((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)) ↔ (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3231rspcv 3575 . . . . . . . . . . 11 ((𝑠𝑈) ∈ 𝑆 → (∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3324, 32syl 17 . . . . . . . . . 10 ((𝜑𝑠𝑆) → (∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈)) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3433adantld 490 . . . . . . . . 9 ((𝜑𝑠𝑆) → (((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑟𝑆 (((𝑇𝑈) ⊆ 𝑟𝑟𝑈) → (𝑟 = (𝑇𝑈) ∨ 𝑟 = 𝑈))) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3519, 34sylbid 240 . . . . . . . 8 ((𝜑𝑠𝑆) → ((𝑇𝑈)𝐶𝑈 → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
36353adant3 1132 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑇𝑈)𝐶𝑈 → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))))
3717, 36mpd 15 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑇𝑈) ⊆ (𝑠𝑈) ∧ (𝑠𝑈) ⊆ 𝑈) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈)))
3816, 37mpd 15 . . . . 5 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈))
39 oveq1 7360 . . . . . . 7 ((𝑠𝑈) = (𝑇𝑈) → ((𝑠𝑈) 𝑇) = ((𝑇𝑈) 𝑇))
4033ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑊 ∈ LMod)
4143ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑇𝑆)
4253ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑈𝑆)
43 simp2 1137 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑠𝑆)
44 simp3r 1203 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → 𝑠 ⊆ (𝑇 𝑈))
451, 10, 2, 40, 41, 42, 43, 13, 44lcvexchlem3 39014 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) 𝑇) = 𝑠)
461lsssssubg 20879 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
473, 46syl 17 . . . . . . . . . . 11 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
4847, 7sseldd 3938 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ∈ (SubGrp‘𝑊))
4947, 4sseldd 3938 . . . . . . . . . 10 (𝜑𝑇 ∈ (SubGrp‘𝑊))
50 inss1 4190 . . . . . . . . . . 11 (𝑇𝑈) ⊆ 𝑇
5150a1i 11 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
5210lsmss1 19562 . . . . . . . . . 10 (((𝑇𝑈) ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝑇𝑈) 𝑇) = 𝑇)
5348, 49, 51, 52syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝑇𝑈) 𝑇) = 𝑇)
54533ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑇𝑈) 𝑇) = 𝑇)
5545, 54eqeq12d 2745 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑠𝑈) 𝑇) = ((𝑇𝑈) 𝑇) ↔ 𝑠 = 𝑇))
5639, 55imbitrid 244 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) = (𝑇𝑈) → 𝑠 = 𝑇))
57 oveq1 7360 . . . . . . 7 ((𝑠𝑈) = 𝑈 → ((𝑠𝑈) 𝑇) = (𝑈 𝑇))
58 lmodabl 20830 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
593, 58syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ Abel)
6047, 5sseldd 3938 . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝑊))
6110lsmcom 19755 . . . . . . . . . 10 ((𝑊 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → (𝑈 𝑇) = (𝑇 𝑈))
6259, 60, 49, 61syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑈 𝑇) = (𝑇 𝑈))
63623ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑈 𝑇) = (𝑇 𝑈))
6445, 63eqeq12d 2745 . . . . . . 7 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑠𝑈) 𝑇) = (𝑈 𝑇) ↔ 𝑠 = (𝑇 𝑈)))
6557, 64imbitrid 244 . . . . . 6 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → ((𝑠𝑈) = 𝑈𝑠 = (𝑇 𝑈)))
6656, 65orim12d 966 . . . . 5 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (((𝑠𝑈) = (𝑇𝑈) ∨ (𝑠𝑈) = 𝑈) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈))))
6738, 66mpd 15 . . . 4 ((𝜑𝑠𝑆 ∧ (𝑇𝑠𝑠 ⊆ (𝑇 𝑈))) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈)))
68673exp 1119 . . 3 (𝜑 → (𝑠𝑆 → ((𝑇𝑠𝑠 ⊆ (𝑇 𝑈)) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈)))))
6968ralrimiv 3120 . 2 (𝜑 → ∀𝑠𝑆 ((𝑇𝑠𝑠 ⊆ (𝑇 𝑈)) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈))))
701, 10lsmcl 21005 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
713, 4, 5, 70syl3anc 1373 . . 3 (𝜑 → (𝑇 𝑈) ∈ 𝑆)
721, 2, 3, 4, 71lcvbr3 39001 . 2 (𝜑 → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠 ⊆ (𝑇 𝑈)) → (𝑠 = 𝑇𝑠 = (𝑇 𝑈))))))
7312, 69, 72mpbir2and 713 1 (𝜑𝑇𝐶(𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cin 3904  wss 3905  wpss 3906   class class class wbr 5095  cfv 6486  (class class class)co 7353  SubGrpcsubg 19017  LSSumclsm 19531  Abelcabl 19678  LModclmod 20781  LSubSpclss 20852  L clcv 38996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-lss 20853  df-lcv 38997
This theorem is referenced by:  lcvexch  39017
  Copyright terms: Public domain W3C validator