Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcveq0 Structured version   Visualization version   GIF version

Theorem lsatcveq0 39050
Description: A subspace covered by an atom must be the zero subspace. (atcveq0 32329 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lsatcveq0.o 0 = (0g𝑊)
lsatcveq0.s 𝑆 = (LSubSp‘𝑊)
lsatcveq0.a 𝐴 = (LSAtoms‘𝑊)
lsatcveq0.c 𝐶 = ( ⋖L𝑊)
lsatcveq0.w (𝜑𝑊 ∈ LVec)
lsatcveq0.u (𝜑𝑈𝑆)
lsatcveq0.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lsatcveq0 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))

Proof of Theorem lsatcveq0
StepHypRef Expression
1 lsatcveq0.s . . . . 5 𝑆 = (LSubSp‘𝑊)
2 lsatcveq0.c . . . . 5 𝐶 = ( ⋖L𝑊)
3 lsatcveq0.w . . . . . 6 (𝜑𝑊 ∈ LVec)
43adantr 480 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑊 ∈ LVec)
5 lsatcveq0.u . . . . . 6 (𝜑𝑈𝑆)
65adantr 480 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑈𝑆)
7 lsatcveq0.a . . . . . . 7 𝐴 = (LSAtoms‘𝑊)
8 lveclmod 21064 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
93, 8syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
10 lsatcveq0.q . . . . . . 7 (𝜑𝑄𝐴)
111, 7, 9, 10lsatlssel 39015 . . . . . 6 (𝜑𝑄𝑆)
1211adantr 480 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑄𝑆)
13 simpr 484 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑈𝐶𝑄)
141, 2, 4, 6, 12, 13lcvpss 39042 . . . 4 ((𝜑𝑈𝐶𝑄) → 𝑈𝑄)
1514ex 412 . . 3 (𝜑 → (𝑈𝐶𝑄𝑈𝑄))
16 lsatcveq0.o . . . . 5 0 = (0g𝑊)
1716, 7, 2, 3, 10lsatcv0 39049 . . . 4 (𝜑 → { 0 }𝐶𝑄)
1833ad2ant1 1133 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑊 ∈ LVec)
1916, 1lsssn0 20905 . . . . . . . 8 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
209, 19syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ 𝑆)
21203ad2ant1 1133 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 } ∈ 𝑆)
22113ad2ant1 1133 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑄𝑆)
2353ad2ant1 1133 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈𝑆)
24 simp2 1137 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 }𝐶𝑄)
2516, 1lss0ss 20906 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → { 0 } ⊆ 𝑈)
269, 5, 25syl2anc 584 . . . . . . 7 (𝜑 → { 0 } ⊆ 𝑈)
27263ad2ant1 1133 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 } ⊆ 𝑈)
28 simp3 1138 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈𝑄)
291, 2, 18, 21, 22, 23, 24, 27, 28lcvnbtwn3 39046 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈 = { 0 })
30293exp 1119 . . . 4 (𝜑 → ({ 0 }𝐶𝑄 → (𝑈𝑄𝑈 = { 0 })))
3117, 30mpd 15 . . 3 (𝜑 → (𝑈𝑄𝑈 = { 0 }))
3215, 31syld 47 . 2 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
33 breq1 5122 . . 3 (𝑈 = { 0 } → (𝑈𝐶𝑄 ↔ { 0 }𝐶𝑄))
3417, 33syl5ibrcom 247 . 2 (𝜑 → (𝑈 = { 0 } → 𝑈𝐶𝑄))
3532, 34impbid 212 1 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wss 3926  wpss 3927  {csn 4601   class class class wbr 5119  cfv 6531  0gc0g 17453  LModclmod 20817  LSubSpclss 20888  LVecclvec 21060  LSAtomsclsa 38992  L clcv 39036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061  df-lsatoms 38994  df-lcv 39037
This theorem is referenced by:  lcvp  39058  lsatcv1  39066
  Copyright terms: Public domain W3C validator