![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcveq0 | Structured version Visualization version GIF version |
Description: A subspace covered by an atom must be the zero subspace. (atcveq0 31869 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lsatcveq0.o | β’ 0 = (0gβπ) |
lsatcveq0.s | β’ π = (LSubSpβπ) |
lsatcveq0.a | β’ π΄ = (LSAtomsβπ) |
lsatcveq0.c | β’ πΆ = ( βL βπ) |
lsatcveq0.w | β’ (π β π β LVec) |
lsatcveq0.u | β’ (π β π β π) |
lsatcveq0.q | β’ (π β π β π΄) |
Ref | Expression |
---|---|
lsatcveq0 | β’ (π β (ππΆπ β π = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcveq0.s | . . . . 5 β’ π = (LSubSpβπ) | |
2 | lsatcveq0.c | . . . . 5 β’ πΆ = ( βL βπ) | |
3 | lsatcveq0.w | . . . . . 6 β’ (π β π β LVec) | |
4 | 3 | adantr 480 | . . . . 5 β’ ((π β§ ππΆπ) β π β LVec) |
5 | lsatcveq0.u | . . . . . 6 β’ (π β π β π) | |
6 | 5 | adantr 480 | . . . . 5 β’ ((π β§ ππΆπ) β π β π) |
7 | lsatcveq0.a | . . . . . . 7 β’ π΄ = (LSAtomsβπ) | |
8 | lveclmod 20862 | . . . . . . . 8 β’ (π β LVec β π β LMod) | |
9 | 3, 8 | syl 17 | . . . . . . 7 β’ (π β π β LMod) |
10 | lsatcveq0.q | . . . . . . 7 β’ (π β π β π΄) | |
11 | 1, 7, 9, 10 | lsatlssel 38171 | . . . . . 6 β’ (π β π β π) |
12 | 11 | adantr 480 | . . . . 5 β’ ((π β§ ππΆπ) β π β π) |
13 | simpr 484 | . . . . 5 β’ ((π β§ ππΆπ) β ππΆπ) | |
14 | 1, 2, 4, 6, 12, 13 | lcvpss 38198 | . . . 4 β’ ((π β§ ππΆπ) β π β π) |
15 | 14 | ex 412 | . . 3 β’ (π β (ππΆπ β π β π)) |
16 | lsatcveq0.o | . . . . 5 β’ 0 = (0gβπ) | |
17 | 16, 7, 2, 3, 10 | lsatcv0 38205 | . . . 4 β’ (π β { 0 }πΆπ) |
18 | 3 | 3ad2ant1 1132 | . . . . . 6 β’ ((π β§ { 0 }πΆπ β§ π β π) β π β LVec) |
19 | 16, 1 | lsssn0 20703 | . . . . . . . 8 β’ (π β LMod β { 0 } β π) |
20 | 9, 19 | syl 17 | . . . . . . 7 β’ (π β { 0 } β π) |
21 | 20 | 3ad2ant1 1132 | . . . . . 6 β’ ((π β§ { 0 }πΆπ β§ π β π) β { 0 } β π) |
22 | 11 | 3ad2ant1 1132 | . . . . . 6 β’ ((π β§ { 0 }πΆπ β§ π β π) β π β π) |
23 | 5 | 3ad2ant1 1132 | . . . . . 6 β’ ((π β§ { 0 }πΆπ β§ π β π) β π β π) |
24 | simp2 1136 | . . . . . 6 β’ ((π β§ { 0 }πΆπ β§ π β π) β { 0 }πΆπ) | |
25 | 16, 1 | lss0ss 20704 | . . . . . . . 8 β’ ((π β LMod β§ π β π) β { 0 } β π) |
26 | 9, 5, 25 | syl2anc 583 | . . . . . . 7 β’ (π β { 0 } β π) |
27 | 26 | 3ad2ant1 1132 | . . . . . 6 β’ ((π β§ { 0 }πΆπ β§ π β π) β { 0 } β π) |
28 | simp3 1137 | . . . . . 6 β’ ((π β§ { 0 }πΆπ β§ π β π) β π β π) | |
29 | 1, 2, 18, 21, 22, 23, 24, 27, 28 | lcvnbtwn3 38202 | . . . . 5 β’ ((π β§ { 0 }πΆπ β§ π β π) β π = { 0 }) |
30 | 29 | 3exp 1118 | . . . 4 β’ (π β ({ 0 }πΆπ β (π β π β π = { 0 }))) |
31 | 17, 30 | mpd 15 | . . 3 β’ (π β (π β π β π = { 0 })) |
32 | 15, 31 | syld 47 | . 2 β’ (π β (ππΆπ β π = { 0 })) |
33 | breq1 5151 | . . 3 β’ (π = { 0 } β (ππΆπ β { 0 }πΆπ)) | |
34 | 17, 33 | syl5ibrcom 246 | . 2 β’ (π β (π = { 0 } β ππΆπ)) |
35 | 32, 34 | impbid 211 | 1 β’ (π β (ππΆπ β π = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wss 3948 β wpss 3949 {csn 4628 class class class wbr 5148 βcfv 6543 0gc0g 17390 LModclmod 20615 LSubSpclss 20687 LVecclvec 20858 LSAtomsclsa 38148 βL clcv 38192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-sbg 18861 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-drng 20503 df-lmod 20617 df-lss 20688 df-lsp 20728 df-lvec 20859 df-lsatoms 38150 df-lcv 38193 |
This theorem is referenced by: lcvp 38214 lsatcv1 38222 |
Copyright terms: Public domain | W3C validator |