Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcveq0 Structured version   Visualization version   GIF version

Theorem lsatcveq0 38631
Description: A subspace covered by an atom must be the zero subspace. (atcveq0 32230 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lsatcveq0.o 0 = (0g𝑊)
lsatcveq0.s 𝑆 = (LSubSp‘𝑊)
lsatcveq0.a 𝐴 = (LSAtoms‘𝑊)
lsatcveq0.c 𝐶 = ( ⋖L𝑊)
lsatcveq0.w (𝜑𝑊 ∈ LVec)
lsatcveq0.u (𝜑𝑈𝑆)
lsatcveq0.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lsatcveq0 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))

Proof of Theorem lsatcveq0
StepHypRef Expression
1 lsatcveq0.s . . . . 5 𝑆 = (LSubSp‘𝑊)
2 lsatcveq0.c . . . . 5 𝐶 = ( ⋖L𝑊)
3 lsatcveq0.w . . . . . 6 (𝜑𝑊 ∈ LVec)
43adantr 479 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑊 ∈ LVec)
5 lsatcveq0.u . . . . . 6 (𝜑𝑈𝑆)
65adantr 479 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑈𝑆)
7 lsatcveq0.a . . . . . . 7 𝐴 = (LSAtoms‘𝑊)
8 lveclmod 21003 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
93, 8syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
10 lsatcveq0.q . . . . . . 7 (𝜑𝑄𝐴)
111, 7, 9, 10lsatlssel 38596 . . . . . 6 (𝜑𝑄𝑆)
1211adantr 479 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑄𝑆)
13 simpr 483 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑈𝐶𝑄)
141, 2, 4, 6, 12, 13lcvpss 38623 . . . 4 ((𝜑𝑈𝐶𝑄) → 𝑈𝑄)
1514ex 411 . . 3 (𝜑 → (𝑈𝐶𝑄𝑈𝑄))
16 lsatcveq0.o . . . . 5 0 = (0g𝑊)
1716, 7, 2, 3, 10lsatcv0 38630 . . . 4 (𝜑 → { 0 }𝐶𝑄)
1833ad2ant1 1130 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑊 ∈ LVec)
1916, 1lsssn0 20844 . . . . . . . 8 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
209, 19syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ 𝑆)
21203ad2ant1 1130 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 } ∈ 𝑆)
22113ad2ant1 1130 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑄𝑆)
2353ad2ant1 1130 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈𝑆)
24 simp2 1134 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 }𝐶𝑄)
2516, 1lss0ss 20845 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → { 0 } ⊆ 𝑈)
269, 5, 25syl2anc 582 . . . . . . 7 (𝜑 → { 0 } ⊆ 𝑈)
27263ad2ant1 1130 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 } ⊆ 𝑈)
28 simp3 1135 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈𝑄)
291, 2, 18, 21, 22, 23, 24, 27, 28lcvnbtwn3 38627 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈 = { 0 })
30293exp 1116 . . . 4 (𝜑 → ({ 0 }𝐶𝑄 → (𝑈𝑄𝑈 = { 0 })))
3117, 30mpd 15 . . 3 (𝜑 → (𝑈𝑄𝑈 = { 0 }))
3215, 31syld 47 . 2 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
33 breq1 5152 . . 3 (𝑈 = { 0 } → (𝑈𝐶𝑄 ↔ { 0 }𝐶𝑄))
3417, 33syl5ibrcom 246 . 2 (𝜑 → (𝑈 = { 0 } → 𝑈𝐶𝑄))
3532, 34impbid 211 1 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wss 3944  wpss 3945  {csn 4630   class class class wbr 5149  cfv 6549  0gc0g 17424  LModclmod 20755  LSubSpclss 20827  LVecclvec 20999  LSAtomsclsa 38573  L clcv 38617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-sbg 18903  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lvec 21000  df-lsatoms 38575  df-lcv 38618
This theorem is referenced by:  lcvp  38639  lsatcv1  38647
  Copyright terms: Public domain W3C validator