Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcveq0 Structured version   Visualization version   GIF version

Theorem lsatcveq0 39032
Description: A subspace covered by an atom must be the zero subspace. (atcveq0 32284 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lsatcveq0.o 0 = (0g𝑊)
lsatcveq0.s 𝑆 = (LSubSp‘𝑊)
lsatcveq0.a 𝐴 = (LSAtoms‘𝑊)
lsatcveq0.c 𝐶 = ( ⋖L𝑊)
lsatcveq0.w (𝜑𝑊 ∈ LVec)
lsatcveq0.u (𝜑𝑈𝑆)
lsatcveq0.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lsatcveq0 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))

Proof of Theorem lsatcveq0
StepHypRef Expression
1 lsatcveq0.s . . . . 5 𝑆 = (LSubSp‘𝑊)
2 lsatcveq0.c . . . . 5 𝐶 = ( ⋖L𝑊)
3 lsatcveq0.w . . . . . 6 (𝜑𝑊 ∈ LVec)
43adantr 480 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑊 ∈ LVec)
5 lsatcveq0.u . . . . . 6 (𝜑𝑈𝑆)
65adantr 480 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑈𝑆)
7 lsatcveq0.a . . . . . . 7 𝐴 = (LSAtoms‘𝑊)
8 lveclmod 21020 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
93, 8syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
10 lsatcveq0.q . . . . . . 7 (𝜑𝑄𝐴)
111, 7, 9, 10lsatlssel 38997 . . . . . 6 (𝜑𝑄𝑆)
1211adantr 480 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑄𝑆)
13 simpr 484 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑈𝐶𝑄)
141, 2, 4, 6, 12, 13lcvpss 39024 . . . 4 ((𝜑𝑈𝐶𝑄) → 𝑈𝑄)
1514ex 412 . . 3 (𝜑 → (𝑈𝐶𝑄𝑈𝑄))
16 lsatcveq0.o . . . . 5 0 = (0g𝑊)
1716, 7, 2, 3, 10lsatcv0 39031 . . . 4 (𝜑 → { 0 }𝐶𝑄)
1833ad2ant1 1133 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑊 ∈ LVec)
1916, 1lsssn0 20861 . . . . . . . 8 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
209, 19syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ 𝑆)
21203ad2ant1 1133 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 } ∈ 𝑆)
22113ad2ant1 1133 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑄𝑆)
2353ad2ant1 1133 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈𝑆)
24 simp2 1137 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 }𝐶𝑄)
2516, 1lss0ss 20862 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → { 0 } ⊆ 𝑈)
269, 5, 25syl2anc 584 . . . . . . 7 (𝜑 → { 0 } ⊆ 𝑈)
27263ad2ant1 1133 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 } ⊆ 𝑈)
28 simp3 1138 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈𝑄)
291, 2, 18, 21, 22, 23, 24, 27, 28lcvnbtwn3 39028 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈 = { 0 })
30293exp 1119 . . . 4 (𝜑 → ({ 0 }𝐶𝑄 → (𝑈𝑄𝑈 = { 0 })))
3117, 30mpd 15 . . 3 (𝜑 → (𝑈𝑄𝑈 = { 0 }))
3215, 31syld 47 . 2 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
33 breq1 5113 . . 3 (𝑈 = { 0 } → (𝑈𝐶𝑄 ↔ { 0 }𝐶𝑄))
3417, 33syl5ibrcom 247 . 2 (𝜑 → (𝑈 = { 0 } → 𝑈𝐶𝑄))
3532, 34impbid 212 1 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917  wpss 3918  {csn 4592   class class class wbr 5110  cfv 6514  0gc0g 17409  LModclmod 20773  LSubSpclss 20844  LVecclvec 21016  LSAtomsclsa 38974  L clcv 39018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lsatoms 38976  df-lcv 39019
This theorem is referenced by:  lcvp  39040  lsatcv1  39048
  Copyright terms: Public domain W3C validator