| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilset | Structured version Visualization version GIF version | ||
| Description: The set of lattice dilations for a fiducial co-atom 𝑊. (Contributed by NM, 11-May-2012.) |
| Ref | Expression |
|---|---|
| ldilset.b | ⊢ 𝐵 = (Base‘𝐾) |
| ldilset.l | ⊢ ≤ = (le‘𝐾) |
| ldilset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ldilset.i | ⊢ 𝐼 = (LAut‘𝐾) |
| ldilset.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ldilset | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldilset.d | . 2 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
| 2 | ldilset.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | ldilset.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 4 | ldilset.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | ldilset.i | . . . . 5 ⊢ 𝐼 = (LAut‘𝐾) | |
| 6 | 2, 3, 4, 5 | ldilfset 40102 | . . . 4 ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
| 7 | 6 | fveq1d 6860 | . . 3 ⊢ (𝐾 ∈ 𝐶 → ((LDil‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})‘𝑊)) |
| 8 | breq2 5111 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑥 ≤ 𝑤 ↔ 𝑥 ≤ 𝑊)) | |
| 9 | 8 | imbi1d 341 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥))) |
| 10 | 9 | ralbidv 3156 | . . . . 5 ⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥))) |
| 11 | 10 | rabbidv 3413 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
| 12 | eqid 2729 | . . . 4 ⊢ (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) | |
| 13 | 5 | fvexi 6872 | . . . . 5 ⊢ 𝐼 ∈ V |
| 14 | 13 | rabex 5294 | . . . 4 ⊢ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)} ∈ V |
| 15 | 11, 12, 14 | fvmpt 6968 | . . 3 ⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})‘𝑊) = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
| 16 | 7, 15 | sylan9eq 2784 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → ((LDil‘𝐾)‘𝑊) = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
| 17 | 1, 16 | eqtrid 2776 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 Basecbs 17179 lecple 17227 LHypclh 39978 LAutclaut 39979 LDilcldil 40094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ldil 40098 |
| This theorem is referenced by: isldil 40104 |
| Copyright terms: Public domain | W3C validator |