Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilset Structured version   Visualization version   GIF version

Theorem ldilset 37686
Description: The set of lattice dilations for a fiducial co-atom 𝑊. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐵 = (Base‘𝐾)
ldilset.l = (le‘𝐾)
ldilset.h 𝐻 = (LHyp‘𝐾)
ldilset.i 𝐼 = (LAut‘𝐾)
ldilset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilset ((𝐾𝐶𝑊𝐻) → 𝐷 = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
Distinct variable groups:   𝑥,𝐵   𝑓,𝐼   𝑥,𝑓,𝐾   𝑓,𝑊,𝑥
Allowed substitution hints:   𝐵(𝑓)   𝐶(𝑥,𝑓)   𝐷(𝑥,𝑓)   𝐻(𝑥,𝑓)   𝐼(𝑥)   (𝑥,𝑓)

Proof of Theorem ldilset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ldilset.d . 2 𝐷 = ((LDil‘𝐾)‘𝑊)
2 ldilset.b . . . . 5 𝐵 = (Base‘𝐾)
3 ldilset.l . . . . 5 = (le‘𝐾)
4 ldilset.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 ldilset.i . . . . 5 𝐼 = (LAut‘𝐾)
62, 3, 4, 5ldilfset 37685 . . . 4 (𝐾𝐶 → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
76fveq1d 6661 . . 3 (𝐾𝐶 → ((LDil‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})‘𝑊))
8 breq2 5037 . . . . . . 7 (𝑤 = 𝑊 → (𝑥 𝑤𝑥 𝑊))
98imbi1d 346 . . . . . 6 (𝑤 = 𝑊 → ((𝑥 𝑤 → (𝑓𝑥) = 𝑥) ↔ (𝑥 𝑊 → (𝑓𝑥) = 𝑥)))
109ralbidv 3127 . . . . 5 (𝑤 = 𝑊 → (∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)))
1110rabbidv 3393 . . . 4 (𝑤 = 𝑊 → {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)} = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
12 eqid 2759 . . . 4 (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})
135fvexi 6673 . . . . 5 𝐼 ∈ V
1413rabex 5203 . . . 4 {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)} ∈ V
1511, 12, 14fvmpt 6760 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})‘𝑊) = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
167, 15sylan9eq 2814 . 2 ((𝐾𝐶𝑊𝐻) → ((LDil‘𝐾)‘𝑊) = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
171, 16syl5eq 2806 1 ((𝐾𝐶𝑊𝐻) → 𝐷 = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3071  {crab 3075   class class class wbr 5033  cmpt 5113  cfv 6336  Basecbs 16542  lecple 16631  LHypclh 37561  LAutclaut 37562  LDilcldil 37677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ldil 37681
This theorem is referenced by:  isldil  37687
  Copyright terms: Public domain W3C validator