Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilset Structured version   Visualization version   GIF version

Theorem ldilset 40147
Description: The set of lattice dilations for a fiducial co-atom 𝑊. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐵 = (Base‘𝐾)
ldilset.l = (le‘𝐾)
ldilset.h 𝐻 = (LHyp‘𝐾)
ldilset.i 𝐼 = (LAut‘𝐾)
ldilset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilset ((𝐾𝐶𝑊𝐻) → 𝐷 = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
Distinct variable groups:   𝑥,𝐵   𝑓,𝐼   𝑥,𝑓,𝐾   𝑓,𝑊,𝑥
Allowed substitution hints:   𝐵(𝑓)   𝐶(𝑥,𝑓)   𝐷(𝑥,𝑓)   𝐻(𝑥,𝑓)   𝐼(𝑥)   (𝑥,𝑓)

Proof of Theorem ldilset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ldilset.d . 2 𝐷 = ((LDil‘𝐾)‘𝑊)
2 ldilset.b . . . . 5 𝐵 = (Base‘𝐾)
3 ldilset.l . . . . 5 = (le‘𝐾)
4 ldilset.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 ldilset.i . . . . 5 𝐼 = (LAut‘𝐾)
62, 3, 4, 5ldilfset 40146 . . . 4 (𝐾𝐶 → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
76fveq1d 6824 . . 3 (𝐾𝐶 → ((LDil‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})‘𝑊))
8 breq2 5095 . . . . . . 7 (𝑤 = 𝑊 → (𝑥 𝑤𝑥 𝑊))
98imbi1d 341 . . . . . 6 (𝑤 = 𝑊 → ((𝑥 𝑤 → (𝑓𝑥) = 𝑥) ↔ (𝑥 𝑊 → (𝑓𝑥) = 𝑥)))
109ralbidv 3155 . . . . 5 (𝑤 = 𝑊 → (∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)))
1110rabbidv 3402 . . . 4 (𝑤 = 𝑊 → {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)} = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
12 eqid 2731 . . . 4 (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})
135fvexi 6836 . . . . 5 𝐼 ∈ V
1413rabex 5277 . . . 4 {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)} ∈ V
1511, 12, 14fvmpt 6929 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})‘𝑊) = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
167, 15sylan9eq 2786 . 2 ((𝐾𝐶𝑊𝐻) → ((LDil‘𝐾)‘𝑊) = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
171, 16eqtrid 2778 1 ((𝐾𝐶𝑊𝐻) → 𝐷 = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395   class class class wbr 5091  cmpt 5172  cfv 6481  Basecbs 17117  lecple 17165  LHypclh 40022  LAutclaut 40023  LDilcldil 40138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ldil 40142
This theorem is referenced by:  isldil  40148
  Copyright terms: Public domain W3C validator