Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilset Structured version   Visualization version   GIF version

Theorem ldilset 40103
Description: The set of lattice dilations for a fiducial co-atom 𝑊. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐵 = (Base‘𝐾)
ldilset.l = (le‘𝐾)
ldilset.h 𝐻 = (LHyp‘𝐾)
ldilset.i 𝐼 = (LAut‘𝐾)
ldilset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilset ((𝐾𝐶𝑊𝐻) → 𝐷 = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
Distinct variable groups:   𝑥,𝐵   𝑓,𝐼   𝑥,𝑓,𝐾   𝑓,𝑊,𝑥
Allowed substitution hints:   𝐵(𝑓)   𝐶(𝑥,𝑓)   𝐷(𝑥,𝑓)   𝐻(𝑥,𝑓)   𝐼(𝑥)   (𝑥,𝑓)

Proof of Theorem ldilset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ldilset.d . 2 𝐷 = ((LDil‘𝐾)‘𝑊)
2 ldilset.b . . . . 5 𝐵 = (Base‘𝐾)
3 ldilset.l . . . . 5 = (le‘𝐾)
4 ldilset.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 ldilset.i . . . . 5 𝐼 = (LAut‘𝐾)
62, 3, 4, 5ldilfset 40102 . . . 4 (𝐾𝐶 → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
76fveq1d 6860 . . 3 (𝐾𝐶 → ((LDil‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})‘𝑊))
8 breq2 5111 . . . . . . 7 (𝑤 = 𝑊 → (𝑥 𝑤𝑥 𝑊))
98imbi1d 341 . . . . . 6 (𝑤 = 𝑊 → ((𝑥 𝑤 → (𝑓𝑥) = 𝑥) ↔ (𝑥 𝑊 → (𝑓𝑥) = 𝑥)))
109ralbidv 3156 . . . . 5 (𝑤 = 𝑊 → (∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)))
1110rabbidv 3413 . . . 4 (𝑤 = 𝑊 → {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)} = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
12 eqid 2729 . . . 4 (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})
135fvexi 6872 . . . . 5 𝐼 ∈ V
1413rabex 5294 . . . 4 {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)} ∈ V
1511, 12, 14fvmpt 6968 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})‘𝑊) = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
167, 15sylan9eq 2784 . 2 ((𝐾𝐶𝑊𝐻) → ((LDil‘𝐾)‘𝑊) = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
171, 16eqtrid 2776 1 ((𝐾𝐶𝑊𝐻) → 𝐷 = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405   class class class wbr 5107  cmpt 5188  cfv 6511  Basecbs 17179  lecple 17227  LHypclh 39978  LAutclaut 39979  LDilcldil 40094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ldil 40098
This theorem is referenced by:  isldil  40104
  Copyright terms: Public domain W3C validator