![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilset | Structured version Visualization version GIF version |
Description: The set of lattice dilations for a fiducial co-atom 𝑊. (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
ldilset.b | ⊢ 𝐵 = (Base‘𝐾) |
ldilset.l | ⊢ ≤ = (le‘𝐾) |
ldilset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ldilset.i | ⊢ 𝐼 = (LAut‘𝐾) |
ldilset.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ldilset | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldilset.d | . 2 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
2 | ldilset.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | ldilset.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
4 | ldilset.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | ldilset.i | . . . . 5 ⊢ 𝐼 = (LAut‘𝐾) | |
6 | 2, 3, 4, 5 | ldilfset 40065 | . . . 4 ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
7 | 6 | fveq1d 6922 | . . 3 ⊢ (𝐾 ∈ 𝐶 → ((LDil‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})‘𝑊)) |
8 | breq2 5170 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑥 ≤ 𝑤 ↔ 𝑥 ≤ 𝑊)) | |
9 | 8 | imbi1d 341 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥))) |
10 | 9 | ralbidv 3184 | . . . . 5 ⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥))) |
11 | 10 | rabbidv 3451 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
12 | eqid 2740 | . . . 4 ⊢ (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) | |
13 | 5 | fvexi 6934 | . . . . 5 ⊢ 𝐼 ∈ V |
14 | 13 | rabex 5357 | . . . 4 ⊢ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)} ∈ V |
15 | 11, 12, 14 | fvmpt 7029 | . . 3 ⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})‘𝑊) = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
16 | 7, 15 | sylan9eq 2800 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → ((LDil‘𝐾)‘𝑊) = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
17 | 1, 16 | eqtrid 2792 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 Basecbs 17258 lecple 17318 LHypclh 39941 LAutclaut 39942 LDilcldil 40057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ldil 40061 |
This theorem is referenced by: isldil 40067 |
Copyright terms: Public domain | W3C validator |