Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilset | Structured version Visualization version GIF version |
Description: The set of lattice dilations for a fiducial co-atom 𝑊. (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
ldilset.b | ⊢ 𝐵 = (Base‘𝐾) |
ldilset.l | ⊢ ≤ = (le‘𝐾) |
ldilset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ldilset.i | ⊢ 𝐼 = (LAut‘𝐾) |
ldilset.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ldilset | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldilset.d | . 2 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
2 | ldilset.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | ldilset.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
4 | ldilset.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | ldilset.i | . . . . 5 ⊢ 𝐼 = (LAut‘𝐾) | |
6 | 2, 3, 4, 5 | ldilfset 37685 | . . . 4 ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
7 | 6 | fveq1d 6661 | . . 3 ⊢ (𝐾 ∈ 𝐶 → ((LDil‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})‘𝑊)) |
8 | breq2 5037 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑥 ≤ 𝑤 ↔ 𝑥 ≤ 𝑊)) | |
9 | 8 | imbi1d 346 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥))) |
10 | 9 | ralbidv 3127 | . . . . 5 ⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥))) |
11 | 10 | rabbidv 3393 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
12 | eqid 2759 | . . . 4 ⊢ (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) | |
13 | 5 | fvexi 6673 | . . . . 5 ⊢ 𝐼 ∈ V |
14 | 13 | rabex 5203 | . . . 4 ⊢ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)} ∈ V |
15 | 11, 12, 14 | fvmpt 6760 | . . 3 ⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})‘𝑊) = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
16 | 7, 15 | sylan9eq 2814 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → ((LDil‘𝐾)‘𝑊) = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
17 | 1, 16 | syl5eq 2806 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3071 {crab 3075 class class class wbr 5033 ↦ cmpt 5113 ‘cfv 6336 Basecbs 16542 lecple 16631 LHypclh 37561 LAutclaut 37562 LDilcldil 37677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ldil 37681 |
This theorem is referenced by: isldil 37687 |
Copyright terms: Public domain | W3C validator |