Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldil Structured version   Visualization version   GIF version

Theorem isldil 38124
Description: The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐵 = (Base‘𝐾)
ldilset.l = (le‘𝐾)
ldilset.h 𝐻 = (LHyp‘𝐾)
ldilset.i 𝐼 = (LAut‘𝐾)
ldilset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
isldil ((𝐾𝐶𝑊𝐻) → (𝐹𝐷 ↔ (𝐹𝐼 ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑊   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)   𝐻(𝑥)   𝐼(𝑥)   (𝑥)

Proof of Theorem isldil
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ldilset.b . . . 4 𝐵 = (Base‘𝐾)
2 ldilset.l . . . 4 = (le‘𝐾)
3 ldilset.h . . . 4 𝐻 = (LHyp‘𝐾)
4 ldilset.i . . . 4 𝐼 = (LAut‘𝐾)
5 ldilset.d . . . 4 𝐷 = ((LDil‘𝐾)‘𝑊)
61, 2, 3, 4, 5ldilset 38123 . . 3 ((𝐾𝐶𝑊𝐻) → 𝐷 = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
76eleq2d 2824 . 2 ((𝐾𝐶𝑊𝐻) → (𝐹𝐷𝐹 ∈ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)}))
8 fveq1 6773 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
98eqeq1d 2740 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
109imbi2d 341 . . . 4 (𝑓 = 𝐹 → ((𝑥 𝑊 → (𝑓𝑥) = 𝑥) ↔ (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
1110ralbidv 3112 . . 3 (𝑓 = 𝐹 → (∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
1211elrab 3624 . 2 (𝐹 ∈ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)} ↔ (𝐹𝐼 ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
137, 12bitrdi 287 1 ((𝐾𝐶𝑊𝐻) → (𝐹𝐷 ↔ (𝐹𝐼 ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  LHypclh 37998  LAutclaut 37999  LDilcldil 38114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ldil 38118
This theorem is referenced by:  ldillaut  38125  ldilval  38127  idldil  38128  ldilcnv  38129  ldilco  38130  cdleme50ldil  38562
  Copyright terms: Public domain W3C validator