![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isldil | Structured version Visualization version GIF version |
Description: The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
ldilset.b | β’ π΅ = (BaseβπΎ) |
ldilset.l | β’ β€ = (leβπΎ) |
ldilset.h | β’ π» = (LHypβπΎ) |
ldilset.i | β’ πΌ = (LAutβπΎ) |
ldilset.d | β’ π· = ((LDilβπΎ)βπ) |
Ref | Expression |
---|---|
isldil | β’ ((πΎ β πΆ β§ π β π») β (πΉ β π· β (πΉ β πΌ β§ βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldilset.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | ldilset.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | ldilset.h | . . . 4 β’ π» = (LHypβπΎ) | |
4 | ldilset.i | . . . 4 β’ πΌ = (LAutβπΎ) | |
5 | ldilset.d | . . . 4 β’ π· = ((LDilβπΎ)βπ) | |
6 | 1, 2, 3, 4, 5 | ldilset 39446 | . . 3 β’ ((πΎ β πΆ β§ π β π») β π· = {π β πΌ β£ βπ₯ β π΅ (π₯ β€ π β (πβπ₯) = π₯)}) |
7 | 6 | eleq2d 2818 | . 2 β’ ((πΎ β πΆ β§ π β π») β (πΉ β π· β πΉ β {π β πΌ β£ βπ₯ β π΅ (π₯ β€ π β (πβπ₯) = π₯)})) |
8 | fveq1 6890 | . . . . . 6 β’ (π = πΉ β (πβπ₯) = (πΉβπ₯)) | |
9 | 8 | eqeq1d 2733 | . . . . 5 β’ (π = πΉ β ((πβπ₯) = π₯ β (πΉβπ₯) = π₯)) |
10 | 9 | imbi2d 340 | . . . 4 β’ (π = πΉ β ((π₯ β€ π β (πβπ₯) = π₯) β (π₯ β€ π β (πΉβπ₯) = π₯))) |
11 | 10 | ralbidv 3176 | . . 3 β’ (π = πΉ β (βπ₯ β π΅ (π₯ β€ π β (πβπ₯) = π₯) β βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯))) |
12 | 11 | elrab 3683 | . 2 β’ (πΉ β {π β πΌ β£ βπ₯ β π΅ (π₯ β€ π β (πβπ₯) = π₯)} β (πΉ β πΌ β§ βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯))) |
13 | 7, 12 | bitrdi 287 | 1 β’ ((πΎ β πΆ β§ π β π») β (πΉ β π· β (πΉ β πΌ β§ βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 {crab 3431 class class class wbr 5148 βcfv 6543 Basecbs 17151 lecple 17211 LHypclh 39321 LAutclaut 39322 LDilcldil 39437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ldil 39441 |
This theorem is referenced by: ldillaut 39448 ldilval 39450 idldil 39451 ldilcnv 39452 ldilco 39453 cdleme50ldil 39885 |
Copyright terms: Public domain | W3C validator |