Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldil Structured version   Visualization version   GIF version

Theorem isldil 38051
Description: The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐵 = (Base‘𝐾)
ldilset.l = (le‘𝐾)
ldilset.h 𝐻 = (LHyp‘𝐾)
ldilset.i 𝐼 = (LAut‘𝐾)
ldilset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
isldil ((𝐾𝐶𝑊𝐻) → (𝐹𝐷 ↔ (𝐹𝐼 ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑊   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)   𝐻(𝑥)   𝐼(𝑥)   (𝑥)

Proof of Theorem isldil
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ldilset.b . . . 4 𝐵 = (Base‘𝐾)
2 ldilset.l . . . 4 = (le‘𝐾)
3 ldilset.h . . . 4 𝐻 = (LHyp‘𝐾)
4 ldilset.i . . . 4 𝐼 = (LAut‘𝐾)
5 ldilset.d . . . 4 𝐷 = ((LDil‘𝐾)‘𝑊)
61, 2, 3, 4, 5ldilset 38050 . . 3 ((𝐾𝐶𝑊𝐻) → 𝐷 = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
76eleq2d 2824 . 2 ((𝐾𝐶𝑊𝐻) → (𝐹𝐷𝐹 ∈ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)}))
8 fveq1 6755 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
98eqeq1d 2740 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
109imbi2d 340 . . . 4 (𝑓 = 𝐹 → ((𝑥 𝑊 → (𝑓𝑥) = 𝑥) ↔ (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
1110ralbidv 3120 . . 3 (𝑓 = 𝐹 → (∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
1211elrab 3617 . 2 (𝐹 ∈ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)} ↔ (𝐹𝐼 ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
137, 12bitrdi 286 1 ((𝐾𝐶𝑊𝐻) → (𝐹𝐷 ↔ (𝐹𝐼 ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895  LHypclh 37925  LAutclaut 37926  LDilcldil 38041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ldil 38045
This theorem is referenced by:  ldillaut  38052  ldilval  38054  idldil  38055  ldilcnv  38056  ldilco  38057  cdleme50ldil  38489
  Copyright terms: Public domain W3C validator