Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldil Structured version   Visualization version   GIF version

Theorem isldil 39447
Description: The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐡 = (Baseβ€˜πΎ)
ldilset.l ≀ = (leβ€˜πΎ)
ldilset.h 𝐻 = (LHypβ€˜πΎ)
ldilset.i 𝐼 = (LAutβ€˜πΎ)
ldilset.d 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
isldil ((𝐾 ∈ 𝐢 ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ 𝐼 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯))))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝐾   π‘₯,π‘Š   π‘₯,𝐹
Allowed substitution hints:   𝐢(π‘₯)   𝐷(π‘₯)   𝐻(π‘₯)   𝐼(π‘₯)   ≀ (π‘₯)

Proof of Theorem isldil
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ldilset.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 ldilset.l . . . 4 ≀ = (leβ€˜πΎ)
3 ldilset.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 ldilset.i . . . 4 𝐼 = (LAutβ€˜πΎ)
5 ldilset.d . . . 4 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5ldilset 39446 . . 3 ((𝐾 ∈ 𝐢 ∧ π‘Š ∈ 𝐻) β†’ 𝐷 = {𝑓 ∈ 𝐼 ∣ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (π‘“β€˜π‘₯) = π‘₯)})
76eleq2d 2818 . 2 ((𝐾 ∈ 𝐢 ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝐷 ↔ 𝐹 ∈ {𝑓 ∈ 𝐼 ∣ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (π‘“β€˜π‘₯) = π‘₯)}))
8 fveq1 6890 . . . . . 6 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘₯) = (πΉβ€˜π‘₯))
98eqeq1d 2733 . . . . 5 (𝑓 = 𝐹 β†’ ((π‘“β€˜π‘₯) = π‘₯ ↔ (πΉβ€˜π‘₯) = π‘₯))
109imbi2d 340 . . . 4 (𝑓 = 𝐹 β†’ ((π‘₯ ≀ π‘Š β†’ (π‘“β€˜π‘₯) = π‘₯) ↔ (π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯)))
1110ralbidv 3176 . . 3 (𝑓 = 𝐹 β†’ (βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (π‘“β€˜π‘₯) = π‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯)))
1211elrab 3683 . 2 (𝐹 ∈ {𝑓 ∈ 𝐼 ∣ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (π‘“β€˜π‘₯) = π‘₯)} ↔ (𝐹 ∈ 𝐼 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯)))
137, 12bitrdi 287 1 ((𝐾 ∈ 𝐢 ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ 𝐼 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  {crab 3431   class class class wbr 5148  β€˜cfv 6543  Basecbs 17151  lecple 17211  LHypclh 39321  LAutclaut 39322  LDilcldil 39437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ldil 39441
This theorem is referenced by:  ldillaut  39448  ldilval  39450  idldil  39451  ldilcnv  39452  ldilco  39453  cdleme50ldil  39885
  Copyright terms: Public domain W3C validator