| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isldil | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
| Ref | Expression |
|---|---|
| ldilset.b | ⊢ 𝐵 = (Base‘𝐾) |
| ldilset.l | ⊢ ≤ = (le‘𝐾) |
| ldilset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ldilset.i | ⊢ 𝐼 = (LAut‘𝐾) |
| ldilset.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| isldil | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldilset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | ldilset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | ldilset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | ldilset.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
| 5 | ldilset.d | . . . 4 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | ldilset 40088 | . . 3 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
| 7 | 6 | eleq2d 2814 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ 𝐹 ∈ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)})) |
| 8 | fveq1 6825 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 9 | 8 | eqeq1d 2731 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) = 𝑥 ↔ (𝐹‘𝑥) = 𝑥)) |
| 10 | 9 | imbi2d 340 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥))) |
| 11 | 10 | ralbidv 3152 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥))) |
| 12 | 11 | elrab 3650 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)} ↔ (𝐹 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥))) |
| 13 | 7, 12 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 class class class wbr 5095 ‘cfv 6486 Basecbs 17138 lecple 17186 LHypclh 39963 LAutclaut 39964 LDilcldil 40079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ldil 40083 |
| This theorem is referenced by: ldillaut 40090 ldilval 40092 idldil 40093 ldilcnv 40094 ldilco 40095 cdleme50ldil 40527 |
| Copyright terms: Public domain | W3C validator |