| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isldil | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
| Ref | Expression |
|---|---|
| ldilset.b | ⊢ 𝐵 = (Base‘𝐾) |
| ldilset.l | ⊢ ≤ = (le‘𝐾) |
| ldilset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ldilset.i | ⊢ 𝐼 = (LAut‘𝐾) |
| ldilset.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| isldil | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldilset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | ldilset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | ldilset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | ldilset.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
| 5 | ldilset.d | . . . 4 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | ldilset 40045 | . . 3 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) |
| 7 | 6 | eleq2d 2819 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ 𝐹 ∈ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)})) |
| 8 | fveq1 6884 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 9 | 8 | eqeq1d 2736 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) = 𝑥 ↔ (𝐹‘𝑥) = 𝑥)) |
| 10 | 9 | imbi2d 340 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥))) |
| 11 | 10 | ralbidv 3165 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥))) |
| 12 | 11 | elrab 3675 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)} ↔ (𝐹 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥))) |
| 13 | 7, 12 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 class class class wbr 5123 ‘cfv 6540 Basecbs 17228 lecple 17279 LHypclh 39920 LAutclaut 39921 LDilcldil 40036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ldil 40040 |
| This theorem is referenced by: ldillaut 40047 ldilval 40049 idldil 40050 ldilcnv 40051 ldilco 40052 cdleme50ldil 40484 |
| Copyright terms: Public domain | W3C validator |