![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leisorel | Structured version Visualization version GIF version |
Description: Version of isorel 7319 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
leisorel | ⊢ ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leiso 14426 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))) | |
2 | 1 | biimpcd 248 | . . 3 ⊢ (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) → 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))) |
3 | isorel 7319 | . . . 4 ⊢ ((𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))) | |
4 | 3 | ex 412 | . . 3 ⊢ (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷)))) |
5 | 2, 4 | syl6 35 | . 2 ⊢ (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))))) |
6 | 5 | 3imp 1108 | 1 ⊢ ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 ∈ wcel 2098 ⊆ wss 3943 class class class wbr 5141 ‘cfv 6537 Isom wiso 6538 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-le 11258 |
This theorem is referenced by: seqcoll 14431 isercolllem2 15618 isercoll 15620 summolem2a 15667 prodmolem2a 15884 xrhmeo 24826 fourierdlem52 45443 |
Copyright terms: Public domain | W3C validator |