MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leisorel Structured version   Visualization version   GIF version

Theorem leisorel 14174
Description: Version of isorel 7197 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
leisorel ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))

Proof of Theorem leisorel
StepHypRef Expression
1 leiso 14173 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
21biimpcd 248 . . 3 (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
3 isorel 7197 . . . 4 ((𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
43ex 413 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) → ((𝐶𝐴𝐷𝐴) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷))))
52, 4syl6 35 . 2 (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → ((𝐶𝐴𝐷𝐴) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))))
653imp 1110 1 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  wss 3887   class class class wbr 5074  cfv 6433   Isom wiso 6434  *cxr 11008   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-le 11015
This theorem is referenced by:  seqcoll  14178  isercolllem2  15377  isercoll  15379  summolem2a  15427  prodmolem2a  15644  xrhmeo  24109  fourierdlem52  43699
  Copyright terms: Public domain W3C validator