| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leisorel | Structured version Visualization version GIF version | ||
| Description: Version of isorel 7304 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| leisorel | ⊢ ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leiso 14431 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))) | |
| 2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) → 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))) |
| 3 | isorel 7304 | . . . 4 ⊢ ((𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷)))) |
| 5 | 2, 4 | syl6 35 | . 2 ⊢ (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))))) |
| 6 | 5 | 3imp 1110 | 1 ⊢ ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 Isom wiso 6515 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-le 11221 |
| This theorem is referenced by: seqcoll 14436 isercolllem2 15639 isercoll 15641 summolem2a 15688 prodmolem2a 15907 xrhmeo 24851 fourierdlem52 46163 |
| Copyright terms: Public domain | W3C validator |