MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leisorel Structured version   Visualization version   GIF version

Theorem leisorel 14499
Description: Version of isorel 7346 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
leisorel ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))

Proof of Theorem leisorel
StepHypRef Expression
1 leiso 14498 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
21biimpcd 249 . . 3 (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
3 isorel 7346 . . . 4 ((𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
43ex 412 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) → ((𝐶𝐴𝐷𝐴) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷))))
52, 4syl6 35 . 2 (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → ((𝐶𝐴𝐷𝐴) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))))
653imp 1111 1 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wss 3951   class class class wbr 5143  cfv 6561   Isom wiso 6562  *cxr 11294   < clt 11295  cle 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-le 11301
This theorem is referenced by:  seqcoll  14503  isercolllem2  15702  isercoll  15704  summolem2a  15751  prodmolem2a  15970  xrhmeo  24977  fourierdlem52  46173
  Copyright terms: Public domain W3C validator