MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leisorel Structured version   Visualization version   GIF version

Theorem leisorel 13493
Description: Version of isorel 6804 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
leisorel ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))

Proof of Theorem leisorel
StepHypRef Expression
1 leiso 13492 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
21biimpcd 241 . . 3 (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
3 isorel 6804 . . . 4 ((𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
43ex 402 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) → ((𝐶𝐴𝐷𝐴) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷))))
52, 4syl6 35 . 2 (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → ((𝐶𝐴𝐷𝐴) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))))
653imp 1138 1 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108  wcel 2157  wss 3769   class class class wbr 4843  cfv 6101   Isom wiso 6102  *cxr 10362   < clt 10363  cle 10364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-le 10369
This theorem is referenced by:  seqcoll  13497  isercolllem2  14737  isercoll  14739  summolem2a  14787  prodmolem2a  15001  xrhmeo  23073  fourierdlem52  41114
  Copyright terms: Public domain W3C validator