| Step | Hyp | Ref
| Expression |
| 1 | | seqcoll.3 |
. 2
⊢ (𝜑 → 𝑁 ∈ (1...(♯‘𝐴))) |
| 2 | | elfznn 13593 |
. . . 4
⊢ (𝑁 ∈
(1...(♯‘𝐴))
→ 𝑁 ∈
ℕ) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 4 | | eleq1 2829 |
. . . . . 6
⊢ (𝑦 = 1 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 1 ∈ (1...(♯‘𝐴)))) |
| 5 | | 2fveq3 6911 |
. . . . . . 7
⊢ (𝑦 = 1 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) |
| 6 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑦 = 1 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘1)) |
| 7 | 5, 6 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑦 = 1 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))) |
| 8 | 4, 7 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 1 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (1 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)))) |
| 9 | 8 | imbi2d 340 |
. . . 4
⊢ (𝑦 = 1 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (1 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))))) |
| 10 | | eleq1 2829 |
. . . . . 6
⊢ (𝑦 = 𝑚 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 𝑚 ∈ (1...(♯‘𝐴)))) |
| 11 | | 2fveq3 6911 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘𝑚))) |
| 12 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑚)) |
| 13 | 11, 12 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑦 = 𝑚 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))) |
| 14 | 10, 13 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝑚 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)))) |
| 15 | 14 | imbi2d 340 |
. . . 4
⊢ (𝑦 = 𝑚 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))))) |
| 16 | | eleq1 2829 |
. . . . . 6
⊢ (𝑦 = (𝑚 + 1) → (𝑦 ∈ (1...(♯‘𝐴)) ↔ (𝑚 + 1) ∈ (1...(♯‘𝐴)))) |
| 17 | | 2fveq3 6911 |
. . . . . . 7
⊢ (𝑦 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1)))) |
| 18 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑦 = (𝑚 + 1) → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘(𝑚 + 1))) |
| 19 | 17, 18 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑦 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))) |
| 20 | 16, 19 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = (𝑚 + 1) → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
| 21 | 20 | imbi2d 340 |
. . . 4
⊢ (𝑦 = (𝑚 + 1) → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
| 22 | | eleq1 2829 |
. . . . . 6
⊢ (𝑦 = 𝑁 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 𝑁 ∈ (1...(♯‘𝐴)))) |
| 23 | | 2fveq3 6911 |
. . . . . . 7
⊢ (𝑦 = 𝑁 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘𝑁))) |
| 24 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑦 = 𝑁 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑁)) |
| 25 | 23, 24 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑦 = 𝑁 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))) |
| 26 | 22, 25 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝑁 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)))) |
| 27 | 26 | imbi2d 340 |
. . . 4
⊢ (𝑦 = 𝑁 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))))) |
| 28 | | seqcoll.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘) |
| 29 | | seqcoll.a |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑆) |
| 30 | | seqcoll.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
| 31 | | seqcoll.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 32 | | isof1o 7343 |
. . . . . . . . . . . . 13
⊢ (𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) |
| 34 | | f1of 6848 |
. . . . . . . . . . . 12
⊢ (𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝐺:(1...(♯‘𝐴))⟶𝐴) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:(1...(♯‘𝐴))⟶𝐴) |
| 36 | | elfzuz2 13569 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(1...(♯‘𝐴))
→ (♯‘𝐴)
∈ (ℤ≥‘1)) |
| 37 | 1, 36 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝐴) ∈
(ℤ≥‘1)) |
| 38 | | eluzfz1 13571 |
. . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → 1 ∈
(1...(♯‘𝐴))) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
(1...(♯‘𝐴))) |
| 40 | 35, 39 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘1) ∈ 𝐴) |
| 41 | 30, 40 | sseldd 3984 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
| 42 | | eluzle 12891 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → 1 ≤ (♯‘𝐴)) |
| 43 | 37, 42 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤
(♯‘𝐴)) |
| 44 | | fzssz 13566 |
. . . . . . . . . . . . . . . 16
⊢
(1...(♯‘𝐴)) ⊆ ℤ |
| 45 | | zssre 12620 |
. . . . . . . . . . . . . . . 16
⊢ ℤ
⊆ ℝ |
| 46 | 44, 45 | sstri 3993 |
. . . . . . . . . . . . . . 15
⊢
(1...(♯‘𝐴)) ⊆ ℝ |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1...(♯‘𝐴)) ⊆
ℝ) |
| 48 | | ressxr 11305 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℝ* |
| 49 | 47, 48 | sstrdi 3996 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...(♯‘𝐴)) ⊆
ℝ*) |
| 50 | | eluzelre 12889 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℝ) |
| 51 | 50 | ssriv 3987 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
| 52 | 30, 51 | sstrdi 3996 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 53 | 52, 48 | sstrdi 3996 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆
ℝ*) |
| 54 | | eluzfz2 13572 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → (♯‘𝐴) ∈ (1...(♯‘𝐴))) |
| 55 | 37, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝐴) ∈
(1...(♯‘𝐴))) |
| 56 | | leisorel 14499 |
. . . . . . . . . . . . 13
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ (1
∈ (1...(♯‘𝐴)) ∧ (♯‘𝐴) ∈ (1...(♯‘𝐴)))) → (1 ≤
(♯‘𝐴) ↔
(𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
| 57 | 31, 49, 53, 39, 55, 56 | syl122anc 1381 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 ≤
(♯‘𝐴) ↔
(𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
| 58 | 43, 57 | mpbid 232 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘1) ≤ (𝐺‘(♯‘𝐴))) |
| 59 | 35, 55 | ffvelcdmd 7105 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ 𝐴) |
| 60 | 30, 59 | sseldd 3984 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑀)) |
| 61 | | eluzelz 12888 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑀) → (𝐺‘(♯‘𝐴)) ∈ ℤ) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℤ) |
| 63 | | elfz5 13556 |
. . . . . . . . . . . 12
⊢ (((𝐺‘1) ∈
(ℤ≥‘𝑀) ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) → ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
| 64 | 41, 62, 63 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
| 65 | 58, 64 | mpbird 257 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴)))) |
| 66 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐺‘1) → (𝐹‘𝑘) = (𝐹‘(𝐺‘1))) |
| 67 | 66 | eleq1d 2826 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝐺‘1) → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘(𝐺‘1)) ∈ 𝑆)) |
| 68 | 67 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝐺‘1) → ((𝜑 → (𝐹‘𝑘) ∈ 𝑆) ↔ (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆))) |
| 69 | | seqcoll.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → (𝐹‘𝑘) ∈ 𝑆) |
| 70 | 69 | expcom 413 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴))) → (𝜑 → (𝐹‘𝑘) ∈ 𝑆)) |
| 71 | 68, 70 | vtoclga 3577 |
. . . . . . . . . 10
⊢ ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) → (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆)) |
| 72 | 65, 71 | mpcom 38 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆) |
| 73 | | eluzelz 12888 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → (𝐺‘1) ∈ ℤ) |
| 74 | 41, 73 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐺‘1) ∈ ℤ) |
| 75 | | peano2zm 12660 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘1) ∈ ℤ →
((𝐺‘1) − 1)
∈ ℤ) |
| 76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐺‘1) − 1) ∈
ℤ) |
| 77 | 76 | zred 12722 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺‘1) − 1) ∈
ℝ) |
| 78 | 74 | zred 12722 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘1) ∈ ℝ) |
| 79 | 62 | zred 12722 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℝ) |
| 80 | 78 | lem1d 12201 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘1)) |
| 81 | 77, 78, 79, 80, 58 | letrd 11418 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴))) |
| 82 | | eluz 12892 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺‘1) − 1) ∈
ℤ ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
| 83 | 76, 62, 82 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
| 84 | 81, 83 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1))) |
| 85 | | fzss2 13604 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) |
| 86 | 84, 85 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) |
| 87 | 86 | sselda 3983 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) |
| 88 | | eluzel2 12883 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 89 | 41, 88 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 90 | | elfzm11 13635 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ (𝐺‘1) ∈ ℤ) →
(𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)))) |
| 91 | 89, 74, 90 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)))) |
| 92 | | simp3 1139 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)) → 𝑘 < (𝐺‘1)) |
| 93 | 78 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ∈ ℝ) |
| 94 | 52 | sselda 3983 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℝ) |
| 95 | | f1ocnv 6860 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 → ◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴))) |
| 96 | 33, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴))) |
| 97 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴)) → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) |
| 98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) |
| 99 | 98 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴))) |
| 100 | | elfznn 13593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)) → (◡𝐺‘𝑘) ∈ ℕ) |
| 101 | 99, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (◡𝐺‘𝑘) ∈ ℕ) |
| 102 | 101 | nnge1d 12314 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ (◡𝐺‘𝑘)) |
| 103 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 104 | 49 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1...(♯‘𝐴)) ⊆
ℝ*) |
| 105 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ⊆
ℝ*) |
| 106 | 39 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ (1...(♯‘𝐴))) |
| 107 | | leisorel 14499 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ (1
∈ (1...(♯‘𝐴)) ∧ (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)))) → (1 ≤ (◡𝐺‘𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘)))) |
| 108 | 103, 104,
105, 106, 99, 107 | syl122anc 1381 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1 ≤ (◡𝐺‘𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘)))) |
| 109 | 102, 108 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘))) |
| 110 | | f1ocnvfv2 7297 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑘 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
| 111 | 33, 110 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
| 112 | 109, 111 | breqtrd 5169 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ≤ 𝑘) |
| 113 | 93, 94, 112 | lensymd 11412 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 < (𝐺‘1)) |
| 114 | 113 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ 𝐴 → ¬ 𝑘 < (𝐺‘1))) |
| 115 | 114 | con2d 134 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 < (𝐺‘1) → ¬ 𝑘 ∈ 𝐴)) |
| 116 | 92, 115 | syl5 34 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)) → ¬ 𝑘 ∈ 𝐴)) |
| 117 | 91, 116 | sylbid 240 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) → ¬ 𝑘 ∈ 𝐴)) |
| 118 | 117 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → ¬ 𝑘 ∈ 𝐴) |
| 119 | 87, 118 | eldifd 3962 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) |
| 120 | | seqcoll.6 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍) |
| 121 | 119, 120 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → (𝐹‘𝑘) = 𝑍) |
| 122 | 28, 29, 41, 72, 121 | seqid 14088 |
. . . . . . . 8
⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1))) = seq(𝐺‘1)( + , 𝐹)) |
| 123 | 122 | fveq1d 6908 |
. . . . . . 7
⊢ (𝜑 → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1))) |
| 124 | | uzid 12893 |
. . . . . . . . 9
⊢ ((𝐺‘1) ∈ ℤ →
(𝐺‘1) ∈
(ℤ≥‘(𝐺‘1))) |
| 125 | 74, 124 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘(𝐺‘1))) |
| 126 | 125 | fvresd 6926 |
. . . . . . 7
⊢ (𝜑 → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) |
| 127 | | seq1 14055 |
. . . . . . . . 9
⊢ ((𝐺‘1) ∈ ℤ →
(seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐹‘(𝐺‘1))) |
| 128 | 74, 127 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐹‘(𝐺‘1))) |
| 129 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐻‘𝑛) = (𝐻‘1)) |
| 130 | | 2fveq3 6911 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(𝐺‘1))) |
| 131 | 129, 130 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)) ↔ (𝐻‘1) = (𝐹‘(𝐺‘1)))) |
| 132 | 131 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → ((𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ↔ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1))))) |
| 133 | | seqcoll.7 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) |
| 134 | 133 | expcom 413 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)))) |
| 135 | 132, 134 | vtoclga 3577 |
. . . . . . . . 9
⊢ (1 ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1)))) |
| 136 | 39, 135 | mpcom 38 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1))) |
| 137 | 128, 136 | eqtr4d 2780 |
. . . . . . 7
⊢ (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1)) |
| 138 | 123, 126,
137 | 3eqtr3d 2785 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1)) |
| 139 | | 1z 12647 |
. . . . . . 7
⊢ 1 ∈
ℤ |
| 140 | | seq1 14055 |
. . . . . . 7
⊢ (1 ∈
ℤ → (seq1( + , 𝐻)‘1) = (𝐻‘1)) |
| 141 | 139, 140 | ax-mp 5 |
. . . . . 6
⊢ (seq1(
+ , 𝐻)‘1) = (𝐻‘1) |
| 142 | 138, 141 | eqtr4di 2795 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)) |
| 143 | 142 | a1d 25 |
. . . 4
⊢ (𝜑 → (1 ∈
(1...(♯‘𝐴))
→ (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))) |
| 144 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℕ) |
| 145 | | nnuz 12921 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
| 146 | 144, 145 | eleqtrdi 2851 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈
(ℤ≥‘1)) |
| 147 | | nnz 12634 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) |
| 148 | 147 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℤ) |
| 149 | | elfzuz3 13561 |
. . . . . . . . . . . 12
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (♯‘𝐴)
∈ (ℤ≥‘(𝑚 + 1))) |
| 150 | 149 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(ℤ≥‘(𝑚 + 1))) |
| 151 | | peano2uzr 12945 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℤ ∧
(♯‘𝐴) ∈
(ℤ≥‘(𝑚 + 1))) → (♯‘𝐴) ∈
(ℤ≥‘𝑚)) |
| 152 | 148, 150,
151 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(ℤ≥‘𝑚)) |
| 153 | | elfzuzb 13558 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(1...(♯‘𝐴))
↔ (𝑚 ∈
(ℤ≥‘1) ∧ (♯‘𝐴) ∈ (ℤ≥‘𝑚))) |
| 154 | 146, 152,
153 | sylanbrc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ (1...(♯‘𝐴))) |
| 155 | 154 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → 𝑚 ∈ (1...(♯‘𝐴)))) |
| 156 | 155 | imim1d 82 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)))) |
| 157 | | oveq1 7438 |
. . . . . . . . . 10
⊢
((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) |
| 158 | | seqcoll.1b |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) |
| 159 | 158 | ad4ant14 752 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) |
| 160 | 30 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
| 161 | 35 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐺:(1...(♯‘𝐴))⟶𝐴) |
| 162 | 161, 154 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ 𝐴) |
| 163 | 160, 162 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ (ℤ≥‘𝑀)) |
| 164 | | nnre 12273 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ) |
| 165 | 164 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℝ) |
| 166 | 165 | ltp1d 12198 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 < (𝑚 + 1)) |
| 167 | 31 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 168 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 + 1) ∈ (1...(♯‘𝐴))) |
| 169 | | isorel 7346 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ (𝑚 ∈
(1...(♯‘𝐴))
∧ (𝑚 + 1) ∈
(1...(♯‘𝐴))))
→ (𝑚 < (𝑚 + 1) ↔ (𝐺‘𝑚) < (𝐺‘(𝑚 + 1)))) |
| 170 | 167, 154,
168, 169 | syl12anc 837 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 < (𝑚 + 1) ↔ (𝐺‘𝑚) < (𝐺‘(𝑚 + 1)))) |
| 171 | 166, 170 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) < (𝐺‘(𝑚 + 1))) |
| 172 | | eluzelz 12888 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑚) ∈ (ℤ≥‘𝑀) → (𝐺‘𝑚) ∈ ℤ) |
| 173 | 163, 172 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ ℤ) |
| 174 | 161, 168 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ 𝐴) |
| 175 | 160, 174 | sseldd 3984 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘𝑀)) |
| 176 | | eluzelz 12888 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘𝑀) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
| 177 | 175, 176 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
| 178 | | zltlem1 12670 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → ((𝐺‘𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 179 | 173, 177,
178 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 180 | 171, 179 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1)) |
| 181 | | peano2zm 12660 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘(𝑚 + 1)) ∈ ℤ → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℤ) |
| 182 | 177, 181 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℤ) |
| 183 | | eluz 12892 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ) →
(((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 184 | 173, 182,
183 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 185 | 180, 184 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚))) |
| 186 | 182 | zred 12722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℝ) |
| 187 | 177 | zred 12722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℝ) |
| 188 | 79 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈ ℝ) |
| 189 | 187 | lem1d 12201 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(𝑚 + 1))) |
| 190 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (𝑚 + 1) ≤
(♯‘𝐴)) |
| 191 | 190 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 + 1) ≤ (♯‘𝐴)) |
| 192 | 49 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) →
(1...(♯‘𝐴))
⊆ ℝ*) |
| 193 | 53 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐴 ⊆
ℝ*) |
| 194 | 55 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(1...(♯‘𝐴))) |
| 195 | | leisorel 14499 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
∧ (♯‘𝐴)
∈ (1...(♯‘𝐴)))) → ((𝑚 + 1) ≤ (♯‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴)))) |
| 196 | 167, 192,
193, 168, 194, 195 | syl122anc 1381 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝑚 + 1) ≤ (♯‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴)))) |
| 197 | 191, 196 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴))) |
| 198 | 186, 187,
188, 189, 197 | letrd 11418 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴))) |
| 199 | 62 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈ ℤ) |
| 200 | | eluz 12892 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) →
((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
| 201 | 182, 199,
200 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
| 202 | 198, 201 | mpbird 257 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1))) |
| 203 | | uztrn 12896 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘(𝐺‘𝑚))) |
| 204 | 202, 185,
203 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘(𝐺‘𝑚))) |
| 205 | | fzss2 13604 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘(𝐺‘𝑚)) → (𝑀...(𝐺‘𝑚)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) |
| 206 | 204, 205 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑀...(𝐺‘𝑚)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) |
| 207 | 206 | sselda 3983 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺‘𝑚))) → 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) |
| 208 | 69 | ad4ant14 752 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → (𝐹‘𝑘) ∈ 𝑆) |
| 209 | 207, 208 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺‘𝑚))) → (𝐹‘𝑘) ∈ 𝑆) |
| 210 | | seqcoll.c |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) |
| 211 | 210 | ad4ant14 752 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) |
| 212 | 163, 209,
211 | seqcl 14063 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) ∈ 𝑆) |
| 213 | | simplll 775 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝜑) |
| 214 | | elfzuz 13560 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ∈ (ℤ≥‘((𝐺‘𝑚) + 1))) |
| 215 | | peano2uz 12943 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺‘𝑚) ∈ (ℤ≥‘𝑀) → ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) |
| 216 | 163, 215 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) |
| 217 | | uztrn 12896 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈
(ℤ≥‘((𝐺‘𝑚) + 1)) ∧ ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 218 | 214, 216,
217 | syl2anr 597 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 219 | | elfzuz3 13561 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑘)) |
| 220 | | uztrn 12896 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑘)) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘)) |
| 221 | 202, 219,
220 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘)) |
| 222 | | elfzuzb 13558 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘))) |
| 223 | 218, 221,
222 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) |
| 224 | 147 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑚 ∈ ℤ) |
| 225 | 98 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) |
| 226 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ 𝐴) |
| 227 | 225, 226 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴))) |
| 228 | 227 | elfzelzd 13565 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ ℤ) |
| 229 | | btwnnz 12694 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℤ ∧ 𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) → ¬ (◡𝐺‘𝑘) ∈ ℤ) |
| 230 | 229 | 3expib 1123 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℤ → ((𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) → ¬ (◡𝐺‘𝑘) ∈ ℤ)) |
| 231 | 230 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℤ → ((◡𝐺‘𝑘) ∈ ℤ → ¬ (𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)))) |
| 232 | 224, 228,
231 | sylc 65 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ¬ (𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1))) |
| 233 | 31 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 234 | 154 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑚 ∈ (1...(♯‘𝐴))) |
| 235 | | isorel 7346 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ (𝑚 ∈
(1...(♯‘𝐴))
∧ (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)))) → (𝑚 < (◡𝐺‘𝑘) ↔ (𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)))) |
| 236 | 233, 234,
227, 235 | syl12anc 837 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 < (◡𝐺‘𝑘) ↔ (𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)))) |
| 237 | 33 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) |
| 238 | 237, 226,
110 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
| 239 | 238 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)) ↔ (𝐺‘𝑚) < 𝑘)) |
| 240 | 173 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘𝑚) ∈ ℤ) |
| 241 | 30 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
| 242 | 241, 226 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 243 | | eluzelz 12888 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
| 244 | 242, 243 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ ℤ) |
| 245 | | zltp1le 12667 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝐺‘𝑚) < 𝑘 ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
| 246 | 240, 244,
245 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘𝑚) < 𝑘 ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
| 247 | 236, 239,
246 | 3bitrd 305 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 < (◡𝐺‘𝑘) ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
| 248 | 168 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 + 1) ∈ (1...(♯‘𝐴))) |
| 249 | | isorel 7346 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ ((◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴)))) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ (𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)))) |
| 250 | 233, 227,
248, 249 | syl12anc 837 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ (𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)))) |
| 251 | 238 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)) ↔ 𝑘 < (𝐺‘(𝑚 + 1)))) |
| 252 | 177 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
| 253 | | zltlem1 12670 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 254 | 244, 252,
253 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 255 | 250, 251,
254 | 3bitrd 305 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 256 | 247, 255 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) ↔ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))) |
| 257 | 232, 256 | mtbid 324 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ¬ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 258 | 257 | expr 456 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑘 ∈ 𝐴 → ¬ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))) |
| 259 | 258 | con2d 134 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)) → ¬ 𝑘 ∈ 𝐴)) |
| 260 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺‘𝑚) + 1) ≤ 𝑘) |
| 261 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)) |
| 262 | 260, 261 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 263 | 259, 262 | impel 505 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → ¬ 𝑘 ∈ 𝐴) |
| 264 | 223, 263 | eldifd 3962 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) |
| 265 | 213, 264,
120 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐹‘𝑘) = 𝑍) |
| 266 | 159, 163,
185, 212, 265 | seqid2 14089 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1))) |
| 267 | 266 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1)))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 268 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 + 1) → (𝐻‘𝑛) = (𝐻‘(𝑚 + 1))) |
| 269 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 + 1) → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
| 270 | 268, 269 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑚 + 1) → ((𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)) ↔ (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 271 | 270 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ↔ (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))))) |
| 272 | 271, 134 | vtoclga 3577 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 273 | 272 | impcom 407 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
| 274 | 273 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
| 275 | 274 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 276 | 89 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑀 ∈ ℤ) |
| 277 | 177 | zcnd 12723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℂ) |
| 278 | | ax-1cn 11213 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
| 279 | | npcan 11517 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺‘(𝑚 + 1)) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1))) |
| 280 | 277, 278,
279 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1))) |
| 281 | | uztrn 12896 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ∧ (𝐺‘𝑚) ∈ (ℤ≥‘𝑀)) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀)) |
| 282 | 185, 163,
281 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀)) |
| 283 | | eluzp1p1 12906 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 284 | 282, 283 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 285 | 280, 284 | eqeltrrd 2842 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘(𝑀 + 1))) |
| 286 | | seqm1 14060 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 287 | 276, 285,
286 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 288 | 267, 275,
287 | 3eqtr4rd 2788 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1)))) |
| 289 | | seqp1 14057 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘1) → (seq1( + , 𝐻)‘(𝑚 + 1)) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) |
| 290 | 146, 289 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq1( + , 𝐻)‘(𝑚 + 1)) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) |
| 291 | 288, 290 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)) ↔ ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1))))) |
| 292 | 157, 291 | imbitrrid 246 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))) |
| 293 | 292 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
| 294 | 293 | a2d 29 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
| 295 | 156, 294 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
| 296 | 295 | expcom 413 |
. . . . 5
⊢ (𝑚 ∈ ℕ → (𝜑 → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
| 297 | 296 | a2d 29 |
. . . 4
⊢ (𝑚 ∈ ℕ → ((𝜑 → (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))) → (𝜑 → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
| 298 | 9, 15, 21, 27, 143, 297 | nnind 12284 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)))) |
| 299 | 3, 298 | mpcom 38 |
. 2
⊢ (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))) |
| 300 | 1, 299 | mpd 15 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)) |