Step | Hyp | Ref
| Expression |
1 | | seqcoll.3 |
. 2
⊢ (𝜑 → 𝑁 ∈ (1...(♯‘𝐴))) |
2 | | elfznn 13214 |
. . . 4
⊢ (𝑁 ∈
(1...(♯‘𝐴))
→ 𝑁 ∈
ℕ) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
4 | | eleq1 2826 |
. . . . . 6
⊢ (𝑦 = 1 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 1 ∈ (1...(♯‘𝐴)))) |
5 | | 2fveq3 6761 |
. . . . . . 7
⊢ (𝑦 = 1 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) |
6 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑦 = 1 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘1)) |
7 | 5, 6 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑦 = 1 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))) |
8 | 4, 7 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 1 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (1 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)))) |
9 | 8 | imbi2d 340 |
. . . 4
⊢ (𝑦 = 1 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (1 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))))) |
10 | | eleq1 2826 |
. . . . . 6
⊢ (𝑦 = 𝑚 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 𝑚 ∈ (1...(♯‘𝐴)))) |
11 | | 2fveq3 6761 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘𝑚))) |
12 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑚)) |
13 | 11, 12 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑦 = 𝑚 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))) |
14 | 10, 13 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝑚 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)))) |
15 | 14 | imbi2d 340 |
. . . 4
⊢ (𝑦 = 𝑚 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))))) |
16 | | eleq1 2826 |
. . . . . 6
⊢ (𝑦 = (𝑚 + 1) → (𝑦 ∈ (1...(♯‘𝐴)) ↔ (𝑚 + 1) ∈ (1...(♯‘𝐴)))) |
17 | | 2fveq3 6761 |
. . . . . . 7
⊢ (𝑦 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1)))) |
18 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑦 = (𝑚 + 1) → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘(𝑚 + 1))) |
19 | 17, 18 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑦 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))) |
20 | 16, 19 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = (𝑚 + 1) → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
21 | 20 | imbi2d 340 |
. . . 4
⊢ (𝑦 = (𝑚 + 1) → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
22 | | eleq1 2826 |
. . . . . 6
⊢ (𝑦 = 𝑁 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 𝑁 ∈ (1...(♯‘𝐴)))) |
23 | | 2fveq3 6761 |
. . . . . . 7
⊢ (𝑦 = 𝑁 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘𝑁))) |
24 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑦 = 𝑁 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑁)) |
25 | 23, 24 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑦 = 𝑁 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))) |
26 | 22, 25 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝑁 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)))) |
27 | 26 | imbi2d 340 |
. . . 4
⊢ (𝑦 = 𝑁 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))))) |
28 | | seqcoll.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘) |
29 | | seqcoll.a |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑆) |
30 | | seqcoll.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
31 | | seqcoll.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
32 | | isof1o 7174 |
. . . . . . . . . . . . 13
⊢ (𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) |
34 | | f1of 6700 |
. . . . . . . . . . . 12
⊢ (𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝐺:(1...(♯‘𝐴))⟶𝐴) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:(1...(♯‘𝐴))⟶𝐴) |
36 | | elfzuz2 13190 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(1...(♯‘𝐴))
→ (♯‘𝐴)
∈ (ℤ≥‘1)) |
37 | 1, 36 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝐴) ∈
(ℤ≥‘1)) |
38 | | eluzfz1 13192 |
. . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → 1 ∈
(1...(♯‘𝐴))) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
(1...(♯‘𝐴))) |
40 | 35, 39 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘1) ∈ 𝐴) |
41 | 30, 40 | sseldd 3918 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
42 | | eluzle 12524 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → 1 ≤ (♯‘𝐴)) |
43 | 37, 42 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤
(♯‘𝐴)) |
44 | | fzssz 13187 |
. . . . . . . . . . . . . . . 16
⊢
(1...(♯‘𝐴)) ⊆ ℤ |
45 | | zssre 12256 |
. . . . . . . . . . . . . . . 16
⊢ ℤ
⊆ ℝ |
46 | 44, 45 | sstri 3926 |
. . . . . . . . . . . . . . 15
⊢
(1...(♯‘𝐴)) ⊆ ℝ |
47 | 46 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1...(♯‘𝐴)) ⊆
ℝ) |
48 | | ressxr 10950 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℝ* |
49 | 47, 48 | sstrdi 3929 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...(♯‘𝐴)) ⊆
ℝ*) |
50 | | eluzelre 12522 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℝ) |
51 | 50 | ssriv 3921 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
52 | 30, 51 | sstrdi 3929 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
53 | 52, 48 | sstrdi 3929 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆
ℝ*) |
54 | | eluzfz2 13193 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → (♯‘𝐴) ∈ (1...(♯‘𝐴))) |
55 | 37, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝐴) ∈
(1...(♯‘𝐴))) |
56 | | leisorel 14102 |
. . . . . . . . . . . . 13
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ (1
∈ (1...(♯‘𝐴)) ∧ (♯‘𝐴) ∈ (1...(♯‘𝐴)))) → (1 ≤
(♯‘𝐴) ↔
(𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
57 | 31, 49, 53, 39, 55, 56 | syl122anc 1377 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 ≤
(♯‘𝐴) ↔
(𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
58 | 43, 57 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘1) ≤ (𝐺‘(♯‘𝐴))) |
59 | 35, 55 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ 𝐴) |
60 | 30, 59 | sseldd 3918 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑀)) |
61 | | eluzelz 12521 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑀) → (𝐺‘(♯‘𝐴)) ∈ ℤ) |
62 | 60, 61 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℤ) |
63 | | elfz5 13177 |
. . . . . . . . . . . 12
⊢ (((𝐺‘1) ∈
(ℤ≥‘𝑀) ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) → ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
64 | 41, 62, 63 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
65 | 58, 64 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴)))) |
66 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐺‘1) → (𝐹‘𝑘) = (𝐹‘(𝐺‘1))) |
67 | 66 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝐺‘1) → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘(𝐺‘1)) ∈ 𝑆)) |
68 | 67 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝐺‘1) → ((𝜑 → (𝐹‘𝑘) ∈ 𝑆) ↔ (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆))) |
69 | | seqcoll.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → (𝐹‘𝑘) ∈ 𝑆) |
70 | 69 | expcom 413 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴))) → (𝜑 → (𝐹‘𝑘) ∈ 𝑆)) |
71 | 68, 70 | vtoclga 3503 |
. . . . . . . . . 10
⊢ ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) → (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆)) |
72 | 65, 71 | mpcom 38 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆) |
73 | | eluzelz 12521 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → (𝐺‘1) ∈ ℤ) |
74 | 41, 73 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐺‘1) ∈ ℤ) |
75 | | peano2zm 12293 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘1) ∈ ℤ →
((𝐺‘1) − 1)
∈ ℤ) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐺‘1) − 1) ∈
ℤ) |
77 | 76 | zred 12355 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺‘1) − 1) ∈
ℝ) |
78 | 74 | zred 12355 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘1) ∈ ℝ) |
79 | 62 | zred 12355 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℝ) |
80 | 78 | lem1d 11838 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘1)) |
81 | 77, 78, 79, 80, 58 | letrd 11062 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴))) |
82 | | eluz 12525 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺‘1) − 1) ∈
ℤ ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
83 | 76, 62, 82 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
84 | 81, 83 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1))) |
85 | | fzss2 13225 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) |
87 | 86 | sselda 3917 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) |
88 | | eluzel2 12516 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
89 | 41, 88 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℤ) |
90 | | elfzm11 13256 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ (𝐺‘1) ∈ ℤ) →
(𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)))) |
91 | 89, 74, 90 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)))) |
92 | | simp3 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)) → 𝑘 < (𝐺‘1)) |
93 | 78 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ∈ ℝ) |
94 | 52 | sselda 3917 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℝ) |
95 | | f1ocnv 6712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 → ◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴))) |
96 | 33, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴))) |
97 | | f1of 6700 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴)) → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) |
99 | 98 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴))) |
100 | | elfznn 13214 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)) → (◡𝐺‘𝑘) ∈ ℕ) |
101 | 99, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (◡𝐺‘𝑘) ∈ ℕ) |
102 | 101 | nnge1d 11951 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ (◡𝐺‘𝑘)) |
103 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
104 | 49 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1...(♯‘𝐴)) ⊆
ℝ*) |
105 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ⊆
ℝ*) |
106 | 39 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ (1...(♯‘𝐴))) |
107 | | leisorel 14102 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ (1
∈ (1...(♯‘𝐴)) ∧ (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)))) → (1 ≤ (◡𝐺‘𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘)))) |
108 | 103, 104,
105, 106, 99, 107 | syl122anc 1377 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1 ≤ (◡𝐺‘𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘)))) |
109 | 102, 108 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘))) |
110 | | f1ocnvfv2 7130 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑘 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
111 | 33, 110 | sylan 579 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
112 | 109, 111 | breqtrd 5096 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ≤ 𝑘) |
113 | 93, 94, 112 | lensymd 11056 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 < (𝐺‘1)) |
114 | 113 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ 𝐴 → ¬ 𝑘 < (𝐺‘1))) |
115 | 114 | con2d 134 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 < (𝐺‘1) → ¬ 𝑘 ∈ 𝐴)) |
116 | 92, 115 | syl5 34 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)) → ¬ 𝑘 ∈ 𝐴)) |
117 | 91, 116 | sylbid 239 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) → ¬ 𝑘 ∈ 𝐴)) |
118 | 117 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → ¬ 𝑘 ∈ 𝐴) |
119 | 87, 118 | eldifd 3894 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) |
120 | | seqcoll.6 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍) |
121 | 119, 120 | syldan 590 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → (𝐹‘𝑘) = 𝑍) |
122 | 28, 29, 41, 72, 121 | seqid 13696 |
. . . . . . . 8
⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1))) = seq(𝐺‘1)( + , 𝐹)) |
123 | 122 | fveq1d 6758 |
. . . . . . 7
⊢ (𝜑 → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1))) |
124 | | uzid 12526 |
. . . . . . . . 9
⊢ ((𝐺‘1) ∈ ℤ →
(𝐺‘1) ∈
(ℤ≥‘(𝐺‘1))) |
125 | 74, 124 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘(𝐺‘1))) |
126 | 125 | fvresd 6776 |
. . . . . . 7
⊢ (𝜑 → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) |
127 | | seq1 13662 |
. . . . . . . . 9
⊢ ((𝐺‘1) ∈ ℤ →
(seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐹‘(𝐺‘1))) |
128 | 74, 127 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐹‘(𝐺‘1))) |
129 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐻‘𝑛) = (𝐻‘1)) |
130 | | 2fveq3 6761 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(𝐺‘1))) |
131 | 129, 130 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)) ↔ (𝐻‘1) = (𝐹‘(𝐺‘1)))) |
132 | 131 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → ((𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ↔ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1))))) |
133 | | seqcoll.7 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) |
134 | 133 | expcom 413 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)))) |
135 | 132, 134 | vtoclga 3503 |
. . . . . . . . 9
⊢ (1 ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1)))) |
136 | 39, 135 | mpcom 38 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1))) |
137 | 128, 136 | eqtr4d 2781 |
. . . . . . 7
⊢ (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1)) |
138 | 123, 126,
137 | 3eqtr3d 2786 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1)) |
139 | | 1z 12280 |
. . . . . . 7
⊢ 1 ∈
ℤ |
140 | | seq1 13662 |
. . . . . . 7
⊢ (1 ∈
ℤ → (seq1( + , 𝐻)‘1) = (𝐻‘1)) |
141 | 139, 140 | ax-mp 5 |
. . . . . 6
⊢ (seq1(
+ , 𝐻)‘1) = (𝐻‘1) |
142 | 138, 141 | eqtr4di 2797 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)) |
143 | 142 | a1d 25 |
. . . 4
⊢ (𝜑 → (1 ∈
(1...(♯‘𝐴))
→ (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))) |
144 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℕ) |
145 | | nnuz 12550 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
146 | 144, 145 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈
(ℤ≥‘1)) |
147 | | nnz 12272 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) |
148 | 147 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℤ) |
149 | | elfzuz3 13182 |
. . . . . . . . . . . 12
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (♯‘𝐴)
∈ (ℤ≥‘(𝑚 + 1))) |
150 | 149 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(ℤ≥‘(𝑚 + 1))) |
151 | | peano2uzr 12572 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℤ ∧
(♯‘𝐴) ∈
(ℤ≥‘(𝑚 + 1))) → (♯‘𝐴) ∈
(ℤ≥‘𝑚)) |
152 | 148, 150,
151 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(ℤ≥‘𝑚)) |
153 | | elfzuzb 13179 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(1...(♯‘𝐴))
↔ (𝑚 ∈
(ℤ≥‘1) ∧ (♯‘𝐴) ∈ (ℤ≥‘𝑚))) |
154 | 146, 152,
153 | sylanbrc 582 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ (1...(♯‘𝐴))) |
155 | 154 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → 𝑚 ∈ (1...(♯‘𝐴)))) |
156 | 155 | imim1d 82 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)))) |
157 | | oveq1 7262 |
. . . . . . . . . 10
⊢
((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) |
158 | | seqcoll.1b |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) |
159 | 158 | ad4ant14 748 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) |
160 | 30 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
161 | 35 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐺:(1...(♯‘𝐴))⟶𝐴) |
162 | 161, 154 | ffvelrnd 6944 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ 𝐴) |
163 | 160, 162 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ (ℤ≥‘𝑀)) |
164 | | nnre 11910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ) |
165 | 164 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℝ) |
166 | 165 | ltp1d 11835 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 < (𝑚 + 1)) |
167 | 31 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
168 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 + 1) ∈ (1...(♯‘𝐴))) |
169 | | isorel 7177 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ (𝑚 ∈
(1...(♯‘𝐴))
∧ (𝑚 + 1) ∈
(1...(♯‘𝐴))))
→ (𝑚 < (𝑚 + 1) ↔ (𝐺‘𝑚) < (𝐺‘(𝑚 + 1)))) |
170 | 167, 154,
168, 169 | syl12anc 833 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 < (𝑚 + 1) ↔ (𝐺‘𝑚) < (𝐺‘(𝑚 + 1)))) |
171 | 166, 170 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) < (𝐺‘(𝑚 + 1))) |
172 | | eluzelz 12521 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑚) ∈ (ℤ≥‘𝑀) → (𝐺‘𝑚) ∈ ℤ) |
173 | 163, 172 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ ℤ) |
174 | 161, 168 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ 𝐴) |
175 | 160, 174 | sseldd 3918 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘𝑀)) |
176 | | eluzelz 12521 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘𝑀) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
177 | 175, 176 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
178 | | zltlem1 12303 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → ((𝐺‘𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
179 | 173, 177,
178 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
180 | 171, 179 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1)) |
181 | | peano2zm 12293 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘(𝑚 + 1)) ∈ ℤ → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℤ) |
182 | 177, 181 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℤ) |
183 | | eluz 12525 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ) →
(((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
184 | 173, 182,
183 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
185 | 180, 184 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚))) |
186 | 182 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℝ) |
187 | 177 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℝ) |
188 | 79 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈ ℝ) |
189 | 187 | lem1d 11838 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(𝑚 + 1))) |
190 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (𝑚 + 1) ≤
(♯‘𝐴)) |
191 | 190 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 + 1) ≤ (♯‘𝐴)) |
192 | 49 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) →
(1...(♯‘𝐴))
⊆ ℝ*) |
193 | 53 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐴 ⊆
ℝ*) |
194 | 55 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(1...(♯‘𝐴))) |
195 | | leisorel 14102 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
∧ (♯‘𝐴)
∈ (1...(♯‘𝐴)))) → ((𝑚 + 1) ≤ (♯‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴)))) |
196 | 167, 192,
193, 168, 194, 195 | syl122anc 1377 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝑚 + 1) ≤ (♯‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴)))) |
197 | 191, 196 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴))) |
198 | 186, 187,
188, 189, 197 | letrd 11062 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴))) |
199 | 62 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈ ℤ) |
200 | | eluz 12525 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) →
((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
201 | 182, 199,
200 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
202 | 198, 201 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1))) |
203 | | uztrn 12529 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘(𝐺‘𝑚))) |
204 | 202, 185,
203 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘(𝐺‘𝑚))) |
205 | | fzss2 13225 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘(𝐺‘𝑚)) → (𝑀...(𝐺‘𝑚)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) |
206 | 204, 205 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑀...(𝐺‘𝑚)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) |
207 | 206 | sselda 3917 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺‘𝑚))) → 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) |
208 | 69 | ad4ant14 748 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → (𝐹‘𝑘) ∈ 𝑆) |
209 | 207, 208 | syldan 590 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺‘𝑚))) → (𝐹‘𝑘) ∈ 𝑆) |
210 | | seqcoll.c |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) |
211 | 210 | ad4ant14 748 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) |
212 | 163, 209,
211 | seqcl 13671 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) ∈ 𝑆) |
213 | | simplll 771 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝜑) |
214 | | elfzuz 13181 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ∈ (ℤ≥‘((𝐺‘𝑚) + 1))) |
215 | | peano2uz 12570 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺‘𝑚) ∈ (ℤ≥‘𝑀) → ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) |
216 | 163, 215 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) |
217 | | uztrn 12529 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈
(ℤ≥‘((𝐺‘𝑚) + 1)) ∧ ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
218 | 214, 216,
217 | syl2anr 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
219 | | elfzuz3 13182 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑘)) |
220 | | uztrn 12529 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑘)) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘)) |
221 | 202, 219,
220 | syl2an 595 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘)) |
222 | | elfzuzb 13179 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘))) |
223 | 218, 221,
222 | sylanbrc 582 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) |
224 | 147 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑚 ∈ ℤ) |
225 | 98 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) |
226 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ 𝐴) |
227 | 225, 226 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴))) |
228 | 227 | elfzelzd 13186 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ ℤ) |
229 | | btwnnz 12326 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℤ ∧ 𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) → ¬ (◡𝐺‘𝑘) ∈ ℤ) |
230 | 229 | 3expib 1120 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℤ → ((𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) → ¬ (◡𝐺‘𝑘) ∈ ℤ)) |
231 | 230 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℤ → ((◡𝐺‘𝑘) ∈ ℤ → ¬ (𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)))) |
232 | 224, 228,
231 | sylc 65 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ¬ (𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1))) |
233 | 31 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
234 | 154 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑚 ∈ (1...(♯‘𝐴))) |
235 | | isorel 7177 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ (𝑚 ∈
(1...(♯‘𝐴))
∧ (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)))) → (𝑚 < (◡𝐺‘𝑘) ↔ (𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)))) |
236 | 233, 234,
227, 235 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 < (◡𝐺‘𝑘) ↔ (𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)))) |
237 | 33 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) |
238 | 237, 226,
110 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
239 | 238 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)) ↔ (𝐺‘𝑚) < 𝑘)) |
240 | 173 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘𝑚) ∈ ℤ) |
241 | 30 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
242 | 241, 226 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
243 | | eluzelz 12521 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
244 | 242, 243 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ ℤ) |
245 | | zltp1le 12300 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝐺‘𝑚) < 𝑘 ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
246 | 240, 244,
245 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘𝑚) < 𝑘 ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
247 | 236, 239,
246 | 3bitrd 304 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 < (◡𝐺‘𝑘) ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
248 | 168 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 + 1) ∈ (1...(♯‘𝐴))) |
249 | | isorel 7177 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ ((◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴)))) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ (𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)))) |
250 | 233, 227,
248, 249 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ (𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)))) |
251 | 238 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)) ↔ 𝑘 < (𝐺‘(𝑚 + 1)))) |
252 | 177 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
253 | | zltlem1 12303 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
254 | 244, 252,
253 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
255 | 250, 251,
254 | 3bitrd 304 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
256 | 247, 255 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) ↔ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))) |
257 | 232, 256 | mtbid 323 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ¬ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
258 | 257 | expr 456 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑘 ∈ 𝐴 → ¬ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))) |
259 | 258 | con2d 134 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)) → ¬ 𝑘 ∈ 𝐴)) |
260 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺‘𝑚) + 1) ≤ 𝑘) |
261 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)) |
262 | 260, 261 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
263 | 259, 262 | impel 505 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → ¬ 𝑘 ∈ 𝐴) |
264 | 223, 263 | eldifd 3894 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) |
265 | 213, 264,
120 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐹‘𝑘) = 𝑍) |
266 | 159, 163,
185, 212, 265 | seqid2 13697 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1))) |
267 | 266 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1)))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
268 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 + 1) → (𝐻‘𝑛) = (𝐻‘(𝑚 + 1))) |
269 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 + 1) → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
270 | 268, 269 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑚 + 1) → ((𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)) ↔ (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))) |
271 | 270 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ↔ (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))))) |
272 | 271, 134 | vtoclga 3503 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))) |
273 | 272 | impcom 407 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
274 | 273 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
275 | 274 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
276 | 89 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑀 ∈ ℤ) |
277 | 177 | zcnd 12356 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℂ) |
278 | | ax-1cn 10860 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
279 | | npcan 11160 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺‘(𝑚 + 1)) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1))) |
280 | 277, 278,
279 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1))) |
281 | | uztrn 12529 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ∧ (𝐺‘𝑚) ∈ (ℤ≥‘𝑀)) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀)) |
282 | 185, 163,
281 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀)) |
283 | | eluzp1p1 12539 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
284 | 282, 283 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
285 | 280, 284 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘(𝑀 + 1))) |
286 | | seqm1 13668 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
287 | 276, 285,
286 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
288 | 267, 275,
287 | 3eqtr4rd 2789 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1)))) |
289 | | seqp1 13664 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘1) → (seq1( + , 𝐻)‘(𝑚 + 1)) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) |
290 | 146, 289 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq1( + , 𝐻)‘(𝑚 + 1)) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) |
291 | 288, 290 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)) ↔ ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1))))) |
292 | 157, 291 | syl5ibr 245 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))) |
293 | 292 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
294 | 293 | a2d 29 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
295 | 156, 294 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
296 | 295 | expcom 413 |
. . . . 5
⊢ (𝑚 ∈ ℕ → (𝜑 → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
297 | 296 | a2d 29 |
. . . 4
⊢ (𝑚 ∈ ℕ → ((𝜑 → (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))) → (𝜑 → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
298 | 9, 15, 21, 27, 143, 297 | nnind 11921 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)))) |
299 | 3, 298 | mpcom 38 |
. 2
⊢ (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))) |
300 | 1, 299 | mpd 15 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)) |