Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem52 Structured version   Visualization version   GIF version

Theorem fourierdlem52 46139
Description: d16:d17,d18:jca |- ( ph -> ( ( S 0) ≤ 𝐴𝐴 ≤ (𝑆 0 ) ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem52.tf (𝜑𝑇 ∈ Fin)
fourierdlem52.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem52.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem52.a (𝜑𝐴 ∈ ℝ)
fourierdlem52.b (𝜑𝐵 ∈ ℝ)
fourierdlem52.t (𝜑𝑇 ⊆ (𝐴[,]𝐵))
fourierdlem52.at (𝜑𝐴𝑇)
fourierdlem52.bt (𝜑𝐵𝑇)
Assertion
Ref Expression
fourierdlem52 (𝜑 → ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (𝑆‘0) = 𝐴) ∧ (𝑆𝑁) = 𝐵))
Distinct variable groups:   𝑓,𝑁   𝑆,𝑓   𝑇,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓)

Proof of Theorem fourierdlem52
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem52.tf . . . . 5 (𝜑𝑇 ∈ Fin)
2 fourierdlem52.t . . . . . 6 (𝜑𝑇 ⊆ (𝐴[,]𝐵))
3 fourierdlem52.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 fourierdlem52.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
53, 4iccssred 13337 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
62, 5sstrd 3946 . . . . 5 (𝜑𝑇 ⊆ ℝ)
7 fourierdlem52.s . . . . 5 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
8 fourierdlem52.n . . . . 5 𝑁 = ((♯‘𝑇) − 1)
91, 6, 7, 8fourierdlem36 46124 . . . 4 (𝜑𝑆 Isom < , < ((0...𝑁), 𝑇))
10 isof1o 7260 . . . 4 (𝑆 Isom < , < ((0...𝑁), 𝑇) → 𝑆:(0...𝑁)–1-1-onto𝑇)
11 f1of 6764 . . . 4 (𝑆:(0...𝑁)–1-1-onto𝑇𝑆:(0...𝑁)⟶𝑇)
129, 10, 113syl 18 . . 3 (𝜑𝑆:(0...𝑁)⟶𝑇)
1312, 2fssd 6669 . 2 (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
14 f1ofo 6771 . . . . . 6 (𝑆:(0...𝑁)–1-1-onto𝑇𝑆:(0...𝑁)–onto𝑇)
159, 10, 143syl 18 . . . . 5 (𝜑𝑆:(0...𝑁)–onto𝑇)
16 fourierdlem52.at . . . . 5 (𝜑𝐴𝑇)
17 foelrn 7041 . . . . 5 ((𝑆:(0...𝑁)–onto𝑇𝐴𝑇) → ∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗))
1815, 16, 17syl2anc 584 . . . 4 (𝜑 → ∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗))
19 elfzle1 13430 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 0 ≤ 𝑗)
2019adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → 0 ≤ 𝑗)
219adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑆 Isom < , < ((0...𝑁), 𝑇))
22 ressxr 11159 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
236, 22sstrdi 3948 . . . . . . . . . . 11 (𝜑𝑇 ⊆ ℝ*)
2423adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑇 ⊆ ℝ*)
25 fzssz 13429 . . . . . . . . . . 11 (0...𝑁) ⊆ ℤ
26 zssre 12478 . . . . . . . . . . . 12 ℤ ⊆ ℝ
2726, 22sstri 3945 . . . . . . . . . . 11 ℤ ⊆ ℝ*
2825, 27sstri 3945 . . . . . . . . . 10 (0...𝑁) ⊆ ℝ*
2924, 28jctil 519 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*))
30 hashcl 14263 . . . . . . . . . . . . . . . 16 (𝑇 ∈ Fin → (♯‘𝑇) ∈ ℕ0)
311, 30syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝑇) ∈ ℕ0)
3216ne0d 4293 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ≠ ∅)
33 hashge1 14296 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ Fin ∧ 𝑇 ≠ ∅) → 1 ≤ (♯‘𝑇))
341, 32, 33syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ (♯‘𝑇))
35 elnnnn0c 12429 . . . . . . . . . . . . . . 15 ((♯‘𝑇) ∈ ℕ ↔ ((♯‘𝑇) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑇)))
3631, 34, 35sylanbrc 583 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑇) ∈ ℕ)
37 nnm1nn0 12425 . . . . . . . . . . . . . 14 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
3836, 37syl 17 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
398, 38eqeltrid 2832 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
40 nn0uz 12777 . . . . . . . . . . . 12 0 = (ℤ‘0)
4139, 40eleqtrdi 2838 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘0))
42 eluzfz1 13434 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
4341, 42syl 17 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝑁))
4443anim1i 615 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (0 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁)))
45 leisorel 14367 . . . . . . . . 9 ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*) ∧ (0 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) → (0 ≤ 𝑗 ↔ (𝑆‘0) ≤ (𝑆𝑗)))
4621, 29, 44, 45syl3anc 1373 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → (0 ≤ 𝑗 ↔ (𝑆‘0) ≤ (𝑆𝑗)))
4720, 46mpbid 232 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑆‘0) ≤ (𝑆𝑗))
48473adant3 1132 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆‘0) ≤ (𝑆𝑗))
49 eqcom 2736 . . . . . . . 8 (𝐴 = (𝑆𝑗) ↔ (𝑆𝑗) = 𝐴)
5049biimpi 216 . . . . . . 7 (𝐴 = (𝑆𝑗) → (𝑆𝑗) = 𝐴)
51503ad2ant3 1135 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆𝑗) = 𝐴)
5248, 51breqtrd 5118 . . . . 5 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆‘0) ≤ 𝐴)
5352rexlimdv3a 3134 . . . 4 (𝜑 → (∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗) → (𝑆‘0) ≤ 𝐴))
5418, 53mpd 15 . . 3 (𝜑 → (𝑆‘0) ≤ 𝐴)
553rexrd 11165 . . . 4 (𝜑𝐴 ∈ ℝ*)
564rexrd 11165 . . . 4 (𝜑𝐵 ∈ ℝ*)
5713, 43ffvelcdmd 7019 . . . 4 (𝜑 → (𝑆‘0) ∈ (𝐴[,]𝐵))
58 iccgelb 13305 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑆‘0) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑆‘0))
5955, 56, 57, 58syl3anc 1373 . . 3 (𝜑𝐴 ≤ (𝑆‘0))
605, 57sseldd 3936 . . . 4 (𝜑 → (𝑆‘0) ∈ ℝ)
6160, 3letri3d 11258 . . 3 (𝜑 → ((𝑆‘0) = 𝐴 ↔ ((𝑆‘0) ≤ 𝐴𝐴 ≤ (𝑆‘0))))
6254, 59, 61mpbir2and 713 . 2 (𝜑 → (𝑆‘0) = 𝐴)
63 eluzfz2 13435 . . . . . 6 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
6441, 63syl 17 . . . . 5 (𝜑𝑁 ∈ (0...𝑁))
6513, 64ffvelcdmd 7019 . . . 4 (𝜑 → (𝑆𝑁) ∈ (𝐴[,]𝐵))
66 iccleub 13304 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑆𝑁) ∈ (𝐴[,]𝐵)) → (𝑆𝑁) ≤ 𝐵)
6755, 56, 65, 66syl3anc 1373 . . 3 (𝜑 → (𝑆𝑁) ≤ 𝐵)
68 fourierdlem52.bt . . . . 5 (𝜑𝐵𝑇)
69 foelrn 7041 . . . . 5 ((𝑆:(0...𝑁)–onto𝑇𝐵𝑇) → ∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗))
7015, 68, 69syl2anc 584 . . . 4 (𝜑 → ∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗))
71 simp3 1138 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝐵 = (𝑆𝑗))
72 elfzle2 13431 . . . . . . . 8 (𝑗 ∈ (0...𝑁) → 𝑗𝑁)
73723ad2ant2 1134 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑗𝑁)
7493ad2ant1 1133 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑆 Isom < , < ((0...𝑁), 𝑇))
75293adant3 1132 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*))
76 simp2 1137 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑗 ∈ (0...𝑁))
77643ad2ant1 1133 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑁 ∈ (0...𝑁))
78 leisorel 14367 . . . . . . . 8 ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*) ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁))) → (𝑗𝑁 ↔ (𝑆𝑗) ≤ (𝑆𝑁)))
7974, 75, 76, 77, 78syl112anc 1376 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → (𝑗𝑁 ↔ (𝑆𝑗) ≤ (𝑆𝑁)))
8073, 79mpbid 232 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → (𝑆𝑗) ≤ (𝑆𝑁))
8171, 80eqbrtrd 5114 . . . . 5 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝐵 ≤ (𝑆𝑁))
8281rexlimdv3a 3134 . . . 4 (𝜑 → (∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗) → 𝐵 ≤ (𝑆𝑁)))
8370, 82mpd 15 . . 3 (𝜑𝐵 ≤ (𝑆𝑁))
845, 65sseldd 3936 . . . 4 (𝜑 → (𝑆𝑁) ∈ ℝ)
8584, 4letri3d 11258 . . 3 (𝜑 → ((𝑆𝑁) = 𝐵 ↔ ((𝑆𝑁) ≤ 𝐵𝐵 ≤ (𝑆𝑁))))
8667, 83, 85mpbir2and 713 . 2 (𝜑 → (𝑆𝑁) = 𝐵)
8713, 62, 86jca31 514 1 (𝜑 → ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (𝑆‘0) = 𝐴) ∧ (𝑆𝑁) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3903  c0 4284   class class class wbr 5092  cio 6436  wf 6478  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482   Isom wiso 6483  (class class class)co 7349  Fincfn 8872  cr 11008  0cc0 11009  1c1 11010  *cxr 11148   < clt 11149  cle 11150  cmin 11347  cn 12128  0cn0 12384  cz 12471  cuz 12735  [,]cicc 13251  ...cfz 13410  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-icc 13255  df-fz 13411  df-hash 14238
This theorem is referenced by:  fourierdlem103  46190  fourierdlem104  46191
  Copyright terms: Public domain W3C validator