Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem52 Structured version   Visualization version   GIF version

Theorem fourierdlem52 43589
Description: d16:d17,d18:jca |- ( ph -> ( ( S 0) ≤ 𝐴𝐴 ≤ (𝑆 0 ) ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem52.tf (𝜑𝑇 ∈ Fin)
fourierdlem52.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem52.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem52.a (𝜑𝐴 ∈ ℝ)
fourierdlem52.b (𝜑𝐵 ∈ ℝ)
fourierdlem52.t (𝜑𝑇 ⊆ (𝐴[,]𝐵))
fourierdlem52.at (𝜑𝐴𝑇)
fourierdlem52.bt (𝜑𝐵𝑇)
Assertion
Ref Expression
fourierdlem52 (𝜑 → ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (𝑆‘0) = 𝐴) ∧ (𝑆𝑁) = 𝐵))
Distinct variable groups:   𝑓,𝑁   𝑆,𝑓   𝑇,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓)

Proof of Theorem fourierdlem52
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem52.tf . . . . 5 (𝜑𝑇 ∈ Fin)
2 fourierdlem52.t . . . . . 6 (𝜑𝑇 ⊆ (𝐴[,]𝐵))
3 fourierdlem52.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 fourierdlem52.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
53, 4iccssred 13095 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
62, 5sstrd 3927 . . . . 5 (𝜑𝑇 ⊆ ℝ)
7 fourierdlem52.s . . . . 5 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
8 fourierdlem52.n . . . . 5 𝑁 = ((♯‘𝑇) − 1)
91, 6, 7, 8fourierdlem36 43574 . . . 4 (𝜑𝑆 Isom < , < ((0...𝑁), 𝑇))
10 isof1o 7174 . . . 4 (𝑆 Isom < , < ((0...𝑁), 𝑇) → 𝑆:(0...𝑁)–1-1-onto𝑇)
11 f1of 6700 . . . 4 (𝑆:(0...𝑁)–1-1-onto𝑇𝑆:(0...𝑁)⟶𝑇)
129, 10, 113syl 18 . . 3 (𝜑𝑆:(0...𝑁)⟶𝑇)
1312, 2fssd 6602 . 2 (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
14 f1ofo 6707 . . . . . 6 (𝑆:(0...𝑁)–1-1-onto𝑇𝑆:(0...𝑁)–onto𝑇)
159, 10, 143syl 18 . . . . 5 (𝜑𝑆:(0...𝑁)–onto𝑇)
16 fourierdlem52.at . . . . 5 (𝜑𝐴𝑇)
17 foelrn 6964 . . . . 5 ((𝑆:(0...𝑁)–onto𝑇𝐴𝑇) → ∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗))
1815, 16, 17syl2anc 583 . . . 4 (𝜑 → ∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗))
19 elfzle1 13188 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 0 ≤ 𝑗)
2019adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → 0 ≤ 𝑗)
219adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑆 Isom < , < ((0...𝑁), 𝑇))
22 ressxr 10950 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
236, 22sstrdi 3929 . . . . . . . . . . 11 (𝜑𝑇 ⊆ ℝ*)
2423adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑇 ⊆ ℝ*)
25 fzssz 13187 . . . . . . . . . . 11 (0...𝑁) ⊆ ℤ
26 zssre 12256 . . . . . . . . . . . 12 ℤ ⊆ ℝ
2726, 22sstri 3926 . . . . . . . . . . 11 ℤ ⊆ ℝ*
2825, 27sstri 3926 . . . . . . . . . 10 (0...𝑁) ⊆ ℝ*
2924, 28jctil 519 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*))
30 hashcl 13999 . . . . . . . . . . . . . . . 16 (𝑇 ∈ Fin → (♯‘𝑇) ∈ ℕ0)
311, 30syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝑇) ∈ ℕ0)
3216ne0d 4266 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ≠ ∅)
33 hashge1 14032 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ Fin ∧ 𝑇 ≠ ∅) → 1 ≤ (♯‘𝑇))
341, 32, 33syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ (♯‘𝑇))
35 elnnnn0c 12208 . . . . . . . . . . . . . . 15 ((♯‘𝑇) ∈ ℕ ↔ ((♯‘𝑇) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑇)))
3631, 34, 35sylanbrc 582 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑇) ∈ ℕ)
37 nnm1nn0 12204 . . . . . . . . . . . . . 14 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
3836, 37syl 17 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
398, 38eqeltrid 2843 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
40 nn0uz 12549 . . . . . . . . . . . 12 0 = (ℤ‘0)
4139, 40eleqtrdi 2849 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘0))
42 eluzfz1 13192 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
4341, 42syl 17 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝑁))
4443anim1i 614 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (0 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁)))
45 leisorel 14102 . . . . . . . . 9 ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*) ∧ (0 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) → (0 ≤ 𝑗 ↔ (𝑆‘0) ≤ (𝑆𝑗)))
4621, 29, 44, 45syl3anc 1369 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → (0 ≤ 𝑗 ↔ (𝑆‘0) ≤ (𝑆𝑗)))
4720, 46mpbid 231 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑆‘0) ≤ (𝑆𝑗))
48473adant3 1130 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆‘0) ≤ (𝑆𝑗))
49 eqcom 2745 . . . . . . . 8 (𝐴 = (𝑆𝑗) ↔ (𝑆𝑗) = 𝐴)
5049biimpi 215 . . . . . . 7 (𝐴 = (𝑆𝑗) → (𝑆𝑗) = 𝐴)
51503ad2ant3 1133 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆𝑗) = 𝐴)
5248, 51breqtrd 5096 . . . . 5 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆‘0) ≤ 𝐴)
5352rexlimdv3a 3214 . . . 4 (𝜑 → (∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗) → (𝑆‘0) ≤ 𝐴))
5418, 53mpd 15 . . 3 (𝜑 → (𝑆‘0) ≤ 𝐴)
553rexrd 10956 . . . 4 (𝜑𝐴 ∈ ℝ*)
564rexrd 10956 . . . 4 (𝜑𝐵 ∈ ℝ*)
5713, 43ffvelrnd 6944 . . . 4 (𝜑 → (𝑆‘0) ∈ (𝐴[,]𝐵))
58 iccgelb 13064 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑆‘0) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑆‘0))
5955, 56, 57, 58syl3anc 1369 . . 3 (𝜑𝐴 ≤ (𝑆‘0))
605, 57sseldd 3918 . . . 4 (𝜑 → (𝑆‘0) ∈ ℝ)
6160, 3letri3d 11047 . . 3 (𝜑 → ((𝑆‘0) = 𝐴 ↔ ((𝑆‘0) ≤ 𝐴𝐴 ≤ (𝑆‘0))))
6254, 59, 61mpbir2and 709 . 2 (𝜑 → (𝑆‘0) = 𝐴)
63 eluzfz2 13193 . . . . . 6 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
6441, 63syl 17 . . . . 5 (𝜑𝑁 ∈ (0...𝑁))
6513, 64ffvelrnd 6944 . . . 4 (𝜑 → (𝑆𝑁) ∈ (𝐴[,]𝐵))
66 iccleub 13063 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑆𝑁) ∈ (𝐴[,]𝐵)) → (𝑆𝑁) ≤ 𝐵)
6755, 56, 65, 66syl3anc 1369 . . 3 (𝜑 → (𝑆𝑁) ≤ 𝐵)
68 fourierdlem52.bt . . . . 5 (𝜑𝐵𝑇)
69 foelrn 6964 . . . . 5 ((𝑆:(0...𝑁)–onto𝑇𝐵𝑇) → ∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗))
7015, 68, 69syl2anc 583 . . . 4 (𝜑 → ∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗))
71 simp3 1136 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝐵 = (𝑆𝑗))
72 elfzle2 13189 . . . . . . . 8 (𝑗 ∈ (0...𝑁) → 𝑗𝑁)
73723ad2ant2 1132 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑗𝑁)
7493ad2ant1 1131 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑆 Isom < , < ((0...𝑁), 𝑇))
75293adant3 1130 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*))
76 simp2 1135 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑗 ∈ (0...𝑁))
77643ad2ant1 1131 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑁 ∈ (0...𝑁))
78 leisorel 14102 . . . . . . . 8 ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*) ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁))) → (𝑗𝑁 ↔ (𝑆𝑗) ≤ (𝑆𝑁)))
7974, 75, 76, 77, 78syl112anc 1372 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → (𝑗𝑁 ↔ (𝑆𝑗) ≤ (𝑆𝑁)))
8073, 79mpbid 231 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → (𝑆𝑗) ≤ (𝑆𝑁))
8171, 80eqbrtrd 5092 . . . . 5 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝐵 ≤ (𝑆𝑁))
8281rexlimdv3a 3214 . . . 4 (𝜑 → (∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗) → 𝐵 ≤ (𝑆𝑁)))
8370, 82mpd 15 . . 3 (𝜑𝐵 ≤ (𝑆𝑁))
845, 65sseldd 3918 . . . 4 (𝜑 → (𝑆𝑁) ∈ ℝ)
8584, 4letri3d 11047 . . 3 (𝜑 → ((𝑆𝑁) = 𝐵 ↔ ((𝑆𝑁) ≤ 𝐵𝐵 ≤ (𝑆𝑁))))
8667, 83, 85mpbir2and 709 . 2 (𝜑 → (𝑆𝑁) = 𝐵)
8713, 62, 86jca31 514 1 (𝜑 → ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (𝑆‘0) = 𝐴) ∧ (𝑆𝑁) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883  c0 4253   class class class wbr 5070  cio 6374  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419  (class class class)co 7255  Fincfn 8691  cr 10801  0cc0 10802  1c1 10803  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cz 12249  cuz 12511  [,]cicc 13011  ...cfz 13168  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-icc 13015  df-fz 13169  df-hash 13973
This theorem is referenced by:  fourierdlem103  43640  fourierdlem104  43641
  Copyright terms: Public domain W3C validator