Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclimc Structured version   Visualization version   GIF version

Theorem reclimc 42221
Description: Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
reclimc.f 𝐹 = (𝑥𝐴𝐵)
reclimc.g 𝐺 = (𝑥𝐴 ↦ (1 / 𝐵))
reclimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
reclimc.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
reclimc.cne0 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
reclimc (𝜑 → (1 / 𝐶) ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem reclimc
StepHypRef Expression
1 eqid 2824 . . . 4 (𝑥𝐴 ↦ (𝐶𝐵)) = (𝑥𝐴 ↦ (𝐶𝐵))
2 eqid 2824 . . . 4 (𝑥𝐴 ↦ (𝐵 · 𝐶)) = (𝑥𝐴 ↦ (𝐵 · 𝐶))
3 eqid 2824 . . . 4 (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) = (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶)))
4 limccl 24481 . . . . . . 7 (𝐹 lim 𝐷) ⊆ ℂ
5 reclimc.c . . . . . . 7 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
64, 5sseldi 3951 . . . . . 6 (𝜑𝐶 ∈ ℂ)
76adantr 484 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
8 reclimc.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
98eldifad 3931 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
107, 9subcld 10995 . . . 4 ((𝜑𝑥𝐴) → (𝐶𝐵) ∈ ℂ)
119, 7mulcld 10659 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ ℂ)
12 eldifsni 4707 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ≠ 0)
138, 12syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
14 reclimc.cne0 . . . . . . . . 9 (𝜑𝐶 ≠ 0)
1514adantr 484 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
169, 7, 13, 15mulne0d 11290 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ≠ 0)
1716neneqd 3019 . . . . . 6 ((𝜑𝑥𝐴) → ¬ (𝐵 · 𝐶) = 0)
18 elsng 4564 . . . . . . 7 ((𝐵 · 𝐶) ∈ ℂ → ((𝐵 · 𝐶) ∈ {0} ↔ (𝐵 · 𝐶) = 0))
1911, 18syl 17 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐵 · 𝐶) ∈ {0} ↔ (𝐵 · 𝐶) = 0))
2017, 19mtbird 328 . . . . 5 ((𝜑𝑥𝐴) → ¬ (𝐵 · 𝐶) ∈ {0})
2111, 20eldifd 3930 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ (ℂ ∖ {0}))
22 eqid 2824 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
23 eqid 2824 . . . . . 6 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
24 eqid 2824 . . . . . 6 (𝑥𝐴 ↦ (𝐶 + -𝐵)) = (𝑥𝐴 ↦ (𝐶 + -𝐵))
259negcld 10982 . . . . . 6 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
26 reclimc.f . . . . . . . 8 𝐹 = (𝑥𝐴𝐵)
2726, 9, 5limcmptdm 42203 . . . . . . 7 (𝜑𝐴 ⊆ ℂ)
28 limcrcl 24480 . . . . . . . . 9 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
295, 28syl 17 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
3029simp3d 1141 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
3122, 27, 6, 30constlimc 42192 . . . . . 6 (𝜑𝐶 ∈ ((𝑥𝐴𝐶) lim 𝐷))
3226, 23, 9, 5neglimc 42215 . . . . . 6 (𝜑 → -𝐶 ∈ ((𝑥𝐴 ↦ -𝐵) lim 𝐷))
3322, 23, 24, 7, 25, 31, 32addlimc 42216 . . . . 5 (𝜑 → (𝐶 + -𝐶) ∈ ((𝑥𝐴 ↦ (𝐶 + -𝐵)) lim 𝐷))
346negidd 10985 . . . . 5 (𝜑 → (𝐶 + -𝐶) = 0)
357, 9negsubd 11001 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐶 + -𝐵) = (𝐶𝐵))
3635mpteq2dva 5147 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐶 + -𝐵)) = (𝑥𝐴 ↦ (𝐶𝐵)))
3736oveq1d 7164 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (𝐶 + -𝐵)) lim 𝐷) = ((𝑥𝐴 ↦ (𝐶𝐵)) lim 𝐷))
3833, 34, 373eltr3d 2930 . . . 4 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ (𝐶𝐵)) lim 𝐷))
3926, 22, 2, 9, 7, 5, 31mullimc 42184 . . . 4 (𝜑 → (𝐶 · 𝐶) ∈ ((𝑥𝐴 ↦ (𝐵 · 𝐶)) lim 𝐷))
406, 6, 14, 14mulne0d 11290 . . . 4 (𝜑 → (𝐶 · 𝐶) ≠ 0)
411, 2, 3, 10, 21, 38, 39, 400ellimcdiv 42217 . . 3 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) lim 𝐷))
42 1cnd 10634 . . . . . . 7 ((𝜑𝑥𝐴) → 1 ∈ ℂ)
4342, 9, 42, 7, 13, 15divsubdivd 11459 . . . . . 6 ((𝜑𝑥𝐴) → ((1 / 𝐵) − (1 / 𝐶)) = (((1 · 𝐶) − (1 · 𝐵)) / (𝐵 · 𝐶)))
447mulid2d 10657 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 · 𝐶) = 𝐶)
459mulid2d 10657 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 · 𝐵) = 𝐵)
4644, 45oveq12d 7167 . . . . . . 7 ((𝜑𝑥𝐴) → ((1 · 𝐶) − (1 · 𝐵)) = (𝐶𝐵))
4746oveq1d 7164 . . . . . 6 ((𝜑𝑥𝐴) → (((1 · 𝐶) − (1 · 𝐵)) / (𝐵 · 𝐶)) = ((𝐶𝐵) / (𝐵 · 𝐶)))
4843, 47eqtr2d 2860 . . . . 5 ((𝜑𝑥𝐴) → ((𝐶𝐵) / (𝐵 · 𝐶)) = ((1 / 𝐵) − (1 / 𝐶)))
4948mpteq2dva 5147 . . . 4 (𝜑 → (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) = (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))))
5049oveq1d 7164 . . 3 (𝜑 → ((𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) lim 𝐷) = ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷))
5141, 50eleqtrd 2918 . 2 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷))
52 reclimc.g . . 3 𝐺 = (𝑥𝐴 ↦ (1 / 𝐵))
53 eqid 2824 . . 3 (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) = (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶)))
549, 13reccld 11407 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℂ)
556, 14reccld 11407 . . 3 (𝜑 → (1 / 𝐶) ∈ ℂ)
5652, 53, 27, 54, 30, 55ellimcabssub0 42185 . 2 (𝜑 → ((1 / 𝐶) ∈ (𝐺 lim 𝐷) ↔ 0 ∈ ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷)))
5751, 56mpbird 260 1 (𝜑 → (1 / 𝐶) ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  cdif 3916  wss 3919  {csn 4550  cmpt 5132  dom cdm 5542  wf 6339  (class class class)co 7149  cc 10533  0cc0 10535  1c1 10536   + caddc 10538   · cmul 10540  cmin 10868  -cneg 10869   / cdiv 11295   lim climc 24468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fi 8872  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-fz 12895  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-rest 16696  df-topn 16697  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cnp 21836  df-xms 22930  df-ms 22931  df-limc 24472
This theorem is referenced by:  divlimc  42224  fourierdlem62  42736
  Copyright terms: Public domain W3C validator