Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclimc Structured version   Visualization version   GIF version

Theorem reclimc 45658
Description: Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
reclimc.f 𝐹 = (𝑥𝐴𝐵)
reclimc.g 𝐺 = (𝑥𝐴 ↦ (1 / 𝐵))
reclimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
reclimc.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
reclimc.cne0 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
reclimc (𝜑 → (1 / 𝐶) ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem reclimc
StepHypRef Expression
1 eqid 2730 . . . 4 (𝑥𝐴 ↦ (𝐶𝐵)) = (𝑥𝐴 ↦ (𝐶𝐵))
2 eqid 2730 . . . 4 (𝑥𝐴 ↦ (𝐵 · 𝐶)) = (𝑥𝐴 ↦ (𝐵 · 𝐶))
3 eqid 2730 . . . 4 (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) = (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶)))
4 limccl 25783 . . . . . . 7 (𝐹 lim 𝐷) ⊆ ℂ
5 reclimc.c . . . . . . 7 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
64, 5sselid 3947 . . . . . 6 (𝜑𝐶 ∈ ℂ)
76adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
8 reclimc.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
98eldifad 3929 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
107, 9subcld 11540 . . . 4 ((𝜑𝑥𝐴) → (𝐶𝐵) ∈ ℂ)
119, 7mulcld 11201 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ ℂ)
12 eldifsni 4757 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ≠ 0)
138, 12syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
14 reclimc.cne0 . . . . . . . . 9 (𝜑𝐶 ≠ 0)
1514adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
169, 7, 13, 15mulne0d 11837 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ≠ 0)
1716neneqd 2931 . . . . . 6 ((𝜑𝑥𝐴) → ¬ (𝐵 · 𝐶) = 0)
18 elsng 4606 . . . . . . 7 ((𝐵 · 𝐶) ∈ ℂ → ((𝐵 · 𝐶) ∈ {0} ↔ (𝐵 · 𝐶) = 0))
1911, 18syl 17 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐵 · 𝐶) ∈ {0} ↔ (𝐵 · 𝐶) = 0))
2017, 19mtbird 325 . . . . 5 ((𝜑𝑥𝐴) → ¬ (𝐵 · 𝐶) ∈ {0})
2111, 20eldifd 3928 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ (ℂ ∖ {0}))
22 eqid 2730 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
23 eqid 2730 . . . . . 6 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
24 eqid 2730 . . . . . 6 (𝑥𝐴 ↦ (𝐶 + -𝐵)) = (𝑥𝐴 ↦ (𝐶 + -𝐵))
259negcld 11527 . . . . . 6 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
26 reclimc.f . . . . . . . 8 𝐹 = (𝑥𝐴𝐵)
2726, 9, 5limcmptdm 45640 . . . . . . 7 (𝜑𝐴 ⊆ ℂ)
28 limcrcl 25782 . . . . . . . . 9 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
295, 28syl 17 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
3029simp3d 1144 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
3122, 27, 6, 30constlimc 45629 . . . . . 6 (𝜑𝐶 ∈ ((𝑥𝐴𝐶) lim 𝐷))
3226, 23, 9, 5neglimc 45652 . . . . . 6 (𝜑 → -𝐶 ∈ ((𝑥𝐴 ↦ -𝐵) lim 𝐷))
3322, 23, 24, 7, 25, 31, 32addlimc 45653 . . . . 5 (𝜑 → (𝐶 + -𝐶) ∈ ((𝑥𝐴 ↦ (𝐶 + -𝐵)) lim 𝐷))
346negidd 11530 . . . . 5 (𝜑 → (𝐶 + -𝐶) = 0)
357, 9negsubd 11546 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐶 + -𝐵) = (𝐶𝐵))
3635mpteq2dva 5203 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐶 + -𝐵)) = (𝑥𝐴 ↦ (𝐶𝐵)))
3736oveq1d 7405 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (𝐶 + -𝐵)) lim 𝐷) = ((𝑥𝐴 ↦ (𝐶𝐵)) lim 𝐷))
3833, 34, 373eltr3d 2843 . . . 4 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ (𝐶𝐵)) lim 𝐷))
3926, 22, 2, 9, 7, 5, 31mullimc 45621 . . . 4 (𝜑 → (𝐶 · 𝐶) ∈ ((𝑥𝐴 ↦ (𝐵 · 𝐶)) lim 𝐷))
406, 6, 14, 14mulne0d 11837 . . . 4 (𝜑 → (𝐶 · 𝐶) ≠ 0)
411, 2, 3, 10, 21, 38, 39, 400ellimcdiv 45654 . . 3 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) lim 𝐷))
42 1cnd 11176 . . . . . . 7 ((𝜑𝑥𝐴) → 1 ∈ ℂ)
4342, 9, 42, 7, 13, 15divsubdivd 12010 . . . . . 6 ((𝜑𝑥𝐴) → ((1 / 𝐵) − (1 / 𝐶)) = (((1 · 𝐶) − (1 · 𝐵)) / (𝐵 · 𝐶)))
447mullidd 11199 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 · 𝐶) = 𝐶)
459mullidd 11199 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 · 𝐵) = 𝐵)
4644, 45oveq12d 7408 . . . . . . 7 ((𝜑𝑥𝐴) → ((1 · 𝐶) − (1 · 𝐵)) = (𝐶𝐵))
4746oveq1d 7405 . . . . . 6 ((𝜑𝑥𝐴) → (((1 · 𝐶) − (1 · 𝐵)) / (𝐵 · 𝐶)) = ((𝐶𝐵) / (𝐵 · 𝐶)))
4843, 47eqtr2d 2766 . . . . 5 ((𝜑𝑥𝐴) → ((𝐶𝐵) / (𝐵 · 𝐶)) = ((1 / 𝐵) − (1 / 𝐶)))
4948mpteq2dva 5203 . . . 4 (𝜑 → (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) = (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))))
5049oveq1d 7405 . . 3 (𝜑 → ((𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) lim 𝐷) = ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷))
5141, 50eleqtrd 2831 . 2 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷))
52 reclimc.g . . 3 𝐺 = (𝑥𝐴 ↦ (1 / 𝐵))
53 eqid 2730 . . 3 (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) = (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶)))
549, 13reccld 11958 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℂ)
556, 14reccld 11958 . . 3 (𝜑 → (1 / 𝐶) ∈ ℂ)
5652, 53, 27, 54, 30, 55ellimcabssub0 45622 . 2 (𝜑 → ((1 / 𝐶) ∈ (𝐺 lim 𝐷) ↔ 0 ∈ ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷)))
5751, 56mpbird 257 1 (𝜑 → (1 / 𝐶) ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  {csn 4592  cmpt 5191  dom cdm 5641  wf 6510  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cnp 23122  df-xms 24215  df-ms 24216  df-limc 25774
This theorem is referenced by:  divlimc  45661  fourierdlem62  46173
  Copyright terms: Public domain W3C validator