Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclimc Structured version   Visualization version   GIF version

Theorem reclimc 43084
Description: Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
reclimc.f 𝐹 = (𝑥𝐴𝐵)
reclimc.g 𝐺 = (𝑥𝐴 ↦ (1 / 𝐵))
reclimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
reclimc.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
reclimc.cne0 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
reclimc (𝜑 → (1 / 𝐶) ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem reclimc
StepHypRef Expression
1 eqid 2738 . . . 4 (𝑥𝐴 ↦ (𝐶𝐵)) = (𝑥𝐴 ↦ (𝐶𝐵))
2 eqid 2738 . . . 4 (𝑥𝐴 ↦ (𝐵 · 𝐶)) = (𝑥𝐴 ↦ (𝐵 · 𝐶))
3 eqid 2738 . . . 4 (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) = (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶)))
4 limccl 24944 . . . . . . 7 (𝐹 lim 𝐷) ⊆ ℂ
5 reclimc.c . . . . . . 7 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
64, 5sselid 3915 . . . . . 6 (𝜑𝐶 ∈ ℂ)
76adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
8 reclimc.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
98eldifad 3895 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
107, 9subcld 11262 . . . 4 ((𝜑𝑥𝐴) → (𝐶𝐵) ∈ ℂ)
119, 7mulcld 10926 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ ℂ)
12 eldifsni 4720 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ≠ 0)
138, 12syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
14 reclimc.cne0 . . . . . . . . 9 (𝜑𝐶 ≠ 0)
1514adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
169, 7, 13, 15mulne0d 11557 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ≠ 0)
1716neneqd 2947 . . . . . 6 ((𝜑𝑥𝐴) → ¬ (𝐵 · 𝐶) = 0)
18 elsng 4572 . . . . . . 7 ((𝐵 · 𝐶) ∈ ℂ → ((𝐵 · 𝐶) ∈ {0} ↔ (𝐵 · 𝐶) = 0))
1911, 18syl 17 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐵 · 𝐶) ∈ {0} ↔ (𝐵 · 𝐶) = 0))
2017, 19mtbird 324 . . . . 5 ((𝜑𝑥𝐴) → ¬ (𝐵 · 𝐶) ∈ {0})
2111, 20eldifd 3894 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ (ℂ ∖ {0}))
22 eqid 2738 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
23 eqid 2738 . . . . . 6 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
24 eqid 2738 . . . . . 6 (𝑥𝐴 ↦ (𝐶 + -𝐵)) = (𝑥𝐴 ↦ (𝐶 + -𝐵))
259negcld 11249 . . . . . 6 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
26 reclimc.f . . . . . . . 8 𝐹 = (𝑥𝐴𝐵)
2726, 9, 5limcmptdm 43066 . . . . . . 7 (𝜑𝐴 ⊆ ℂ)
28 limcrcl 24943 . . . . . . . . 9 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
295, 28syl 17 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
3029simp3d 1142 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
3122, 27, 6, 30constlimc 43055 . . . . . 6 (𝜑𝐶 ∈ ((𝑥𝐴𝐶) lim 𝐷))
3226, 23, 9, 5neglimc 43078 . . . . . 6 (𝜑 → -𝐶 ∈ ((𝑥𝐴 ↦ -𝐵) lim 𝐷))
3322, 23, 24, 7, 25, 31, 32addlimc 43079 . . . . 5 (𝜑 → (𝐶 + -𝐶) ∈ ((𝑥𝐴 ↦ (𝐶 + -𝐵)) lim 𝐷))
346negidd 11252 . . . . 5 (𝜑 → (𝐶 + -𝐶) = 0)
357, 9negsubd 11268 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐶 + -𝐵) = (𝐶𝐵))
3635mpteq2dva 5170 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐶 + -𝐵)) = (𝑥𝐴 ↦ (𝐶𝐵)))
3736oveq1d 7270 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (𝐶 + -𝐵)) lim 𝐷) = ((𝑥𝐴 ↦ (𝐶𝐵)) lim 𝐷))
3833, 34, 373eltr3d 2853 . . . 4 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ (𝐶𝐵)) lim 𝐷))
3926, 22, 2, 9, 7, 5, 31mullimc 43047 . . . 4 (𝜑 → (𝐶 · 𝐶) ∈ ((𝑥𝐴 ↦ (𝐵 · 𝐶)) lim 𝐷))
406, 6, 14, 14mulne0d 11557 . . . 4 (𝜑 → (𝐶 · 𝐶) ≠ 0)
411, 2, 3, 10, 21, 38, 39, 400ellimcdiv 43080 . . 3 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) lim 𝐷))
42 1cnd 10901 . . . . . . 7 ((𝜑𝑥𝐴) → 1 ∈ ℂ)
4342, 9, 42, 7, 13, 15divsubdivd 11726 . . . . . 6 ((𝜑𝑥𝐴) → ((1 / 𝐵) − (1 / 𝐶)) = (((1 · 𝐶) − (1 · 𝐵)) / (𝐵 · 𝐶)))
447mulid2d 10924 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 · 𝐶) = 𝐶)
459mulid2d 10924 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 · 𝐵) = 𝐵)
4644, 45oveq12d 7273 . . . . . . 7 ((𝜑𝑥𝐴) → ((1 · 𝐶) − (1 · 𝐵)) = (𝐶𝐵))
4746oveq1d 7270 . . . . . 6 ((𝜑𝑥𝐴) → (((1 · 𝐶) − (1 · 𝐵)) / (𝐵 · 𝐶)) = ((𝐶𝐵) / (𝐵 · 𝐶)))
4843, 47eqtr2d 2779 . . . . 5 ((𝜑𝑥𝐴) → ((𝐶𝐵) / (𝐵 · 𝐶)) = ((1 / 𝐵) − (1 / 𝐶)))
4948mpteq2dva 5170 . . . 4 (𝜑 → (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) = (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))))
5049oveq1d 7270 . . 3 (𝜑 → ((𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) lim 𝐷) = ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷))
5141, 50eleqtrd 2841 . 2 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷))
52 reclimc.g . . 3 𝐺 = (𝑥𝐴 ↦ (1 / 𝐵))
53 eqid 2738 . . 3 (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) = (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶)))
549, 13reccld 11674 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℂ)
556, 14reccld 11674 . . 3 (𝜑 → (1 / 𝐶) ∈ ℂ)
5652, 53, 27, 54, 30, 55ellimcabssub0 43048 . 2 (𝜑 → ((1 / 𝐶) ∈ (𝐺 lim 𝐷) ↔ 0 ∈ ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷)))
5751, 56mpbird 256 1 (𝜑 → (1 / 𝐶) ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  wss 3883  {csn 4558  cmpt 5153  dom cdm 5580  wf 6414  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935
This theorem is referenced by:  divlimc  43087  fourierdlem62  43599
  Copyright terms: Public domain W3C validator