Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclimc Structured version   Visualization version   GIF version

Theorem reclimc 45609
Description: Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
reclimc.f 𝐹 = (𝑥𝐴𝐵)
reclimc.g 𝐺 = (𝑥𝐴 ↦ (1 / 𝐵))
reclimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
reclimc.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
reclimc.cne0 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
reclimc (𝜑 → (1 / 𝐶) ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem reclimc
StepHypRef Expression
1 eqid 2735 . . . 4 (𝑥𝐴 ↦ (𝐶𝐵)) = (𝑥𝐴 ↦ (𝐶𝐵))
2 eqid 2735 . . . 4 (𝑥𝐴 ↦ (𝐵 · 𝐶)) = (𝑥𝐴 ↦ (𝐵 · 𝐶))
3 eqid 2735 . . . 4 (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) = (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶)))
4 limccl 25925 . . . . . . 7 (𝐹 lim 𝐷) ⊆ ℂ
5 reclimc.c . . . . . . 7 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
64, 5sselid 3993 . . . . . 6 (𝜑𝐶 ∈ ℂ)
76adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
8 reclimc.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
98eldifad 3975 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
107, 9subcld 11618 . . . 4 ((𝜑𝑥𝐴) → (𝐶𝐵) ∈ ℂ)
119, 7mulcld 11279 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ ℂ)
12 eldifsni 4795 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ≠ 0)
138, 12syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
14 reclimc.cne0 . . . . . . . . 9 (𝜑𝐶 ≠ 0)
1514adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
169, 7, 13, 15mulne0d 11913 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ≠ 0)
1716neneqd 2943 . . . . . 6 ((𝜑𝑥𝐴) → ¬ (𝐵 · 𝐶) = 0)
18 elsng 4645 . . . . . . 7 ((𝐵 · 𝐶) ∈ ℂ → ((𝐵 · 𝐶) ∈ {0} ↔ (𝐵 · 𝐶) = 0))
1911, 18syl 17 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐵 · 𝐶) ∈ {0} ↔ (𝐵 · 𝐶) = 0))
2017, 19mtbird 325 . . . . 5 ((𝜑𝑥𝐴) → ¬ (𝐵 · 𝐶) ∈ {0})
2111, 20eldifd 3974 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ (ℂ ∖ {0}))
22 eqid 2735 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
23 eqid 2735 . . . . . 6 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
24 eqid 2735 . . . . . 6 (𝑥𝐴 ↦ (𝐶 + -𝐵)) = (𝑥𝐴 ↦ (𝐶 + -𝐵))
259negcld 11605 . . . . . 6 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
26 reclimc.f . . . . . . . 8 𝐹 = (𝑥𝐴𝐵)
2726, 9, 5limcmptdm 45591 . . . . . . 7 (𝜑𝐴 ⊆ ℂ)
28 limcrcl 25924 . . . . . . . . 9 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
295, 28syl 17 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
3029simp3d 1143 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
3122, 27, 6, 30constlimc 45580 . . . . . 6 (𝜑𝐶 ∈ ((𝑥𝐴𝐶) lim 𝐷))
3226, 23, 9, 5neglimc 45603 . . . . . 6 (𝜑 → -𝐶 ∈ ((𝑥𝐴 ↦ -𝐵) lim 𝐷))
3322, 23, 24, 7, 25, 31, 32addlimc 45604 . . . . 5 (𝜑 → (𝐶 + -𝐶) ∈ ((𝑥𝐴 ↦ (𝐶 + -𝐵)) lim 𝐷))
346negidd 11608 . . . . 5 (𝜑 → (𝐶 + -𝐶) = 0)
357, 9negsubd 11624 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐶 + -𝐵) = (𝐶𝐵))
3635mpteq2dva 5248 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐶 + -𝐵)) = (𝑥𝐴 ↦ (𝐶𝐵)))
3736oveq1d 7446 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (𝐶 + -𝐵)) lim 𝐷) = ((𝑥𝐴 ↦ (𝐶𝐵)) lim 𝐷))
3833, 34, 373eltr3d 2853 . . . 4 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ (𝐶𝐵)) lim 𝐷))
3926, 22, 2, 9, 7, 5, 31mullimc 45572 . . . 4 (𝜑 → (𝐶 · 𝐶) ∈ ((𝑥𝐴 ↦ (𝐵 · 𝐶)) lim 𝐷))
406, 6, 14, 14mulne0d 11913 . . . 4 (𝜑 → (𝐶 · 𝐶) ≠ 0)
411, 2, 3, 10, 21, 38, 39, 400ellimcdiv 45605 . . 3 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) lim 𝐷))
42 1cnd 11254 . . . . . . 7 ((𝜑𝑥𝐴) → 1 ∈ ℂ)
4342, 9, 42, 7, 13, 15divsubdivd 12086 . . . . . 6 ((𝜑𝑥𝐴) → ((1 / 𝐵) − (1 / 𝐶)) = (((1 · 𝐶) − (1 · 𝐵)) / (𝐵 · 𝐶)))
447mullidd 11277 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 · 𝐶) = 𝐶)
459mullidd 11277 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 · 𝐵) = 𝐵)
4644, 45oveq12d 7449 . . . . . . 7 ((𝜑𝑥𝐴) → ((1 · 𝐶) − (1 · 𝐵)) = (𝐶𝐵))
4746oveq1d 7446 . . . . . 6 ((𝜑𝑥𝐴) → (((1 · 𝐶) − (1 · 𝐵)) / (𝐵 · 𝐶)) = ((𝐶𝐵) / (𝐵 · 𝐶)))
4843, 47eqtr2d 2776 . . . . 5 ((𝜑𝑥𝐴) → ((𝐶𝐵) / (𝐵 · 𝐶)) = ((1 / 𝐵) − (1 / 𝐶)))
4948mpteq2dva 5248 . . . 4 (𝜑 → (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) = (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))))
5049oveq1d 7446 . . 3 (𝜑 → ((𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) lim 𝐷) = ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷))
5141, 50eleqtrd 2841 . 2 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷))
52 reclimc.g . . 3 𝐺 = (𝑥𝐴 ↦ (1 / 𝐵))
53 eqid 2735 . . 3 (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) = (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶)))
549, 13reccld 12034 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℂ)
556, 14reccld 12034 . . 3 (𝜑 → (1 / 𝐶) ∈ ℂ)
5652, 53, 27, 54, 30, 55ellimcabssub0 45573 . 2 (𝜑 → ((1 / 𝐶) ∈ (𝐺 lim 𝐷) ↔ 0 ∈ ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷)))
5751, 56mpbird 257 1 (𝜑 → (1 / 𝐶) ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cdif 3960  wss 3963  {csn 4631  cmpt 5231  dom cdm 5689  wf 6559  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491   / cdiv 11918   lim climc 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17469  df-topn 17470  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cnp 23252  df-xms 24346  df-ms 24347  df-limc 25916
This theorem is referenced by:  divlimc  45612  fourierdlem62  46124
  Copyright terms: Public domain W3C validator