| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmod0vlid | Structured version Visualization version GIF version | ||
| Description: Left identity law for the zero vector. (hvaddlid 31042 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| 0vlid.v | ⊢ 𝑉 = (Base‘𝑊) |
| 0vlid.a | ⊢ + = (+g‘𝑊) |
| 0vlid.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| lmod0vlid | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20865 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | 0vlid.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | 0vlid.a | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | 0vlid.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 5 | 2, 3, 4 | grplid 18985 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 0gc0g 17484 Grpcgrp 18951 LModclmod 20858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-riota 7388 df-ov 7434 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-lmod 20860 |
| This theorem is referenced by: lmodvneg1 20903 lsssn0 20946 lspfixed 21130 lspexch 21131 lsmsat 39009 dochfl1 41478 baerlem5blem1 41711 |
| Copyright terms: Public domain | W3C validator |