MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vlid Structured version   Visualization version   GIF version

Theorem lmod0vlid 20829
Description: Left identity law for the zero vector. (hvaddlid 31007 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
0vlid.v 𝑉 = (Base‘𝑊)
0vlid.a + = (+g𝑊)
0vlid.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vlid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)

Proof of Theorem lmod0vlid
StepHypRef Expression
1 lmodgrp 20804 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 0vlid.v . . 3 𝑉 = (Base‘𝑊)
3 0vlid.a . . 3 + = (+g𝑊)
4 0vlid.z . . 3 0 = (0g𝑊)
52, 3, 4grplid 18884 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)
61, 5sylan 580 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cfv 6488  (class class class)co 7354  Basecbs 17124  +gcplusg 17165  0gc0g 17347  Grpcgrp 18850  LModclmod 20797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496  df-riota 7311  df-ov 7357  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-lmod 20799
This theorem is referenced by:  lmodvneg1  20842  lsssn0  20885  lspfixed  21069  lspexch  21070  lsmsat  39130  dochfl1  41598  baerlem5blem1  41831
  Copyright terms: Public domain W3C validator