MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspexch Structured version   Visualization version   GIF version

Theorem lspexch 19636
Description: Exchange property for span of a pair. TODO: see if a version with Y,Z and X,Z reversed will shorten proofs (analogous to lspexchn1 19637 versus lspexchn2 19638); look for lspexch 19636 and prcom 4539 in same proof. TODO: would a hypothesis of ¬ 𝑋 ∈ (𝑁‘{𝑍}) instead of (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) be better overall? This would be shorter and also satisfy the 𝑋0 condition. Here and also lspindp* and all proofs affected by them (all in NM's mathbox); there are 58 hypotheses with the pattern as of 24-May-2015. (Contributed by NM, 11-Apr-2015.)
Hypotheses
Ref Expression
lspexch.v 𝑉 = (Base‘𝑊)
lspexch.o 0 = (0g𝑊)
lspexch.n 𝑁 = (LSpan‘𝑊)
lspexch.w (𝜑𝑊 ∈ LVec)
lspexch.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lspexch.y (𝜑𝑌𝑉)
lspexch.z (𝜑𝑍𝑉)
lspexch.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
lspexch.e (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
lspexch (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍}))

Proof of Theorem lspexch
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspexch.e . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2 lspexch.v . . . 4 𝑉 = (Base‘𝑊)
3 eqid 2773 . . . 4 (+g𝑊) = (+g𝑊)
4 eqid 2773 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2773 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2773 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 lspexch.n . . . 4 𝑁 = (LSpan‘𝑊)
8 lspexch.w . . . . 5 (𝜑𝑊 ∈ LVec)
9 lveclmod 19613 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
108, 9syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
11 lspexch.y . . . 4 (𝜑𝑌𝑉)
12 lspexch.z . . . 4 (𝜑𝑍𝑉)
132, 3, 4, 5, 6, 7, 10, 11, 12lspprel 19601 . . 3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))))
141, 13mpbid 224 . 2 (𝜑 → ∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
15 eqid 2773 . . . . . . . 8 (-g𝑊) = (-g𝑊)
16 eqid 2773 . . . . . . . 8 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
1783ad2ant1 1114 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LVec)
1817, 9syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LMod)
19 simp2r 1181 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
20 lspexch.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21203ad2ant1 1114 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2221eldifad 3836 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋𝑉)
23123ad2ant1 1114 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑍𝑉)
242, 3, 15, 6, 4, 5, 16, 18, 19, 22, 23lmodsubvs 19425 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)))
25 simp3 1119 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
2625eqcomd 2779 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = 𝑋)
27103ad2ant1 1114 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LMod)
28 lmodgrp 19376 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2927, 28syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ Grp)
302, 4, 6, 5lmodvscl 19386 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍𝑉) → (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉)
3118, 19, 23, 30syl3anc 1352 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉)
32 simp2l 1180 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑗 ∈ (Base‘(Scalar‘𝑊)))
33113ad2ant1 1114 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑌𝑉)
342, 4, 6, 5lmodvscl 19386 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑗( ·𝑠𝑊)𝑌) ∈ 𝑉)
3518, 32, 33, 34syl3anc 1352 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑗( ·𝑠𝑊)𝑌) ∈ 𝑉)
362, 3, 15grpsubadd 17987 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ (𝑋𝑉 ∧ (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉 ∧ (𝑗( ·𝑠𝑊)𝑌) ∈ 𝑉)) → ((𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌) ↔ ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = 𝑋))
3729, 22, 31, 35, 36syl13anc 1353 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌) ↔ ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = 𝑋))
3826, 37mpbird 249 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌))
3924, 38eqtr3d 2811 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌))
40 eqid 2773 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
41 eqid 2773 . . . . . . 7 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
42 lspexch.q . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
43423ad2ant1 1114 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
44 lspexch.o . . . . . . . . . . . 12 0 = (0g𝑊)
4517adantr 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
4623adantr 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑍𝑉)
4725adantr 473 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
48 oveq1 6982 . . . . . . . . . . . . . . . 16 (𝑗 = (0g‘(Scalar‘𝑊)) → (𝑗( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
4948oveq1d 6990 . . . . . . . . . . . . . . 15 (𝑗 = (0g‘(Scalar‘𝑊)) → ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
502, 4, 6, 40, 44lmod0vs 19402 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
5118, 33, 50syl2anc 576 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
5251oveq1d 6990 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = ( 0 (+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
532, 3, 44lmod0vlid 19399 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉) → ( 0 (+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5418, 31, 53syl2anc 576 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ( 0 (+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5552, 54eqtrd 2809 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5649, 55sylan9eqr 2831 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5747, 56eqtrd 2809 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑘( ·𝑠𝑊)𝑍))
582, 6, 4, 5, 7, 18, 19, 23lspsneli 19508 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5958adantr 473 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
6057, 59eqeltrd 2861 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑍}))
61 eldifsni 4593 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
6221, 61syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋0 )
6362adantr 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋0 )
642, 44, 7, 45, 46, 60, 63lspsneleq 19622 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → (𝑁‘{𝑋}) = (𝑁‘{𝑍}))
6564ex 405 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑗 = (0g‘(Scalar‘𝑊)) → (𝑁‘{𝑋}) = (𝑁‘{𝑍})))
6665necon3d 2983 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) → 𝑗 ≠ (0g‘(Scalar‘𝑊))))
6743, 66mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑗 ≠ (0g‘(Scalar‘𝑊)))
68 eldifsn 4590 . . . . . . . 8 (𝑗 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑗 ≠ (0g‘(Scalar‘𝑊))))
6932, 67, 68sylanbrc 575 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑗 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
704lmodfgrp 19378 . . . . . . . . . . 11 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
7127, 70syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (Scalar‘𝑊) ∈ Grp)
725, 16grpinvcl 17951 . . . . . . . . . 10 (((Scalar‘𝑊) ∈ Grp ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
7371, 19, 72syl2anc 576 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
742, 4, 6, 5lmodvscl 19386 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍𝑉) → (((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍) ∈ 𝑉)
7518, 73, 23, 74syl3anc 1352 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍) ∈ 𝑉)
762, 3lmodvacl 19383 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍) ∈ 𝑉) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ 𝑉)
7718, 22, 75, 76syl3anc 1352 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ 𝑉)
782, 6, 4, 5, 40, 41, 17, 69, 77, 33lvecinv 19620 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌) ↔ 𝑌 = (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)))))
7939, 78mpbid 224 . . . . 5 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑌 = (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍))))
80 eqid 2773 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
812, 80, 7, 18, 22, 23lspprcl 19485 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑊))
824lvecdrng 19612 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
8317, 82syl 17 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (Scalar‘𝑊) ∈ DivRing)
845, 40, 41drnginvrcl 19255 . . . . . . 7 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑗 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊)))
8583, 32, 67, 84syl3anc 1352 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊)))
86 eqid 2773 . . . . . . . . . 10 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
872, 4, 6, 86lmodvs1 19397 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
8818, 22, 87syl2anc 576 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
8988oveq1d 6990 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) = (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)))
904lmodring 19377 . . . . . . . . 9 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
915, 86ringidcl 19054 . . . . . . . . 9 ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
9218, 90, 913syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
932, 3, 6, 4, 5, 7, 18, 92, 73, 22, 23lsppreli 19597 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍}))
9489, 93eqeltrrd 2862 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍}))
954, 6, 5, 80lssvscl 19462 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑊)) ∧ (((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍}))) → (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍))) ∈ (𝑁‘{𝑋, 𝑍}))
9618, 81, 85, 94, 95syl22anc 827 . . . . 5 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍))) ∈ (𝑁‘{𝑋, 𝑍}))
9779, 96eqeltrd 2861 . . . 4 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
98973exp 1100 . . 3 (𝜑 → ((𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))))
9998rexlimdvv 3233 . 2 (𝜑 → (∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
10014, 99mpd 15 1 (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2962  wrex 3084  cdif 3821  {csn 4436  {cpr 4438  cfv 6186  (class class class)co 6975  Basecbs 16338  +gcplusg 16420  Scalarcsca 16423   ·𝑠 cvsca 16424  0gc0g 16568  Grpcgrp 17904  invgcminusg 17905  -gcsg 17906  1rcur 18987  Ringcrg 19033  invrcinvr 19157  DivRingcdr 19238  LModclmod 19369  LSubSpclss 19438  LSpanclspn 19478  LVecclvec 19609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-tpos 7694  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-3 11503  df-ndx 16341  df-slot 16342  df-base 16344  df-sets 16345  df-ress 16346  df-plusg 16433  df-mulr 16434  df-0g 16570  df-mgm 17723  df-sgrp 17765  df-mnd 17776  df-submnd 17817  df-grp 17907  df-minusg 17908  df-sbg 17909  df-subg 18073  df-cntz 18231  df-lsm 18535  df-cmn 18681  df-abl 18682  df-mgp 18976  df-ur 18988  df-ring 19035  df-oppr 19109  df-dvdsr 19127  df-unit 19128  df-invr 19158  df-drng 19240  df-lmod 19371  df-lss 19439  df-lsp 19479  df-lvec 19610
This theorem is referenced by:  lspexchn1  19637  lspindp1  19640  mapdh8ab  38391  mapdh8ad  38393  mapdh8b  38394  mapdh8c  38395  mapdh8e  38398
  Copyright terms: Public domain W3C validator