Step | Hyp | Ref
| Expression |
1 | | lspexch.e |
. . 3
β’ (π β π β (πβ{π, π})) |
2 | | lspexch.v |
. . . 4
β’ π = (Baseβπ) |
3 | | eqid 2732 |
. . . 4
β’
(+gβπ) = (+gβπ) |
4 | | eqid 2732 |
. . . 4
β’
(Scalarβπ) =
(Scalarβπ) |
5 | | eqid 2732 |
. . . 4
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
6 | | eqid 2732 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
7 | | lspexch.n |
. . . 4
β’ π = (LSpanβπ) |
8 | | lspexch.w |
. . . . 5
β’ (π β π β LVec) |
9 | | lveclmod 20709 |
. . . . 5
β’ (π β LVec β π β LMod) |
10 | 8, 9 | syl 17 |
. . . 4
β’ (π β π β LMod) |
11 | | lspexch.y |
. . . 4
β’ (π β π β π) |
12 | | lspexch.z |
. . . 4
β’ (π β π β π) |
13 | 2, 3, 4, 5, 6, 7, 10, 11, 12 | lspprel 20697 |
. . 3
β’ (π β (π β (πβ{π, π}) β βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π)))) |
14 | 1, 13 | mpbid 231 |
. 2
β’ (π β βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) |
15 | | eqid 2732 |
. . . . . . . 8
β’
(-gβπ) = (-gβπ) |
16 | | eqid 2732 |
. . . . . . . 8
β’
(invgβ(Scalarβπ)) =
(invgβ(Scalarβπ)) |
17 | 8 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β LVec) |
18 | 17, 9 | syl 17 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β LMod) |
19 | | simp2r 1200 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β (Baseβ(Scalarβπ))) |
20 | | lspexch.x |
. . . . . . . . . 10
β’ (π β π β (π β { 0 })) |
21 | 20 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β (π β { 0 })) |
22 | 21 | eldifad 3959 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β π) |
23 | 12 | 3ad2ant1 1133 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β π) |
24 | 2, 3, 15, 6, 4, 5,
16, 18, 19, 22, 23 | lmodsubvs 20520 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (π(-gβπ)(π( Β·π
βπ)π)) = (π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π))) |
25 | | simp3 1138 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) |
26 | 25 | eqcomd 2738 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π)) = π) |
27 | 10 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β LMod) |
28 | | lmodgrp 20470 |
. . . . . . . . . 10
β’ (π β LMod β π β Grp) |
29 | 27, 28 | syl 17 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β Grp) |
30 | 2, 4, 6, 5 | lmodvscl 20481 |
. . . . . . . . . 10
β’ ((π β LMod β§ π β
(Baseβ(Scalarβπ)) β§ π β π) β (π( Β·π
βπ)π) β π) |
31 | 18, 19, 23, 30 | syl3anc 1371 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (π( Β·π
βπ)π) β π) |
32 | | simp2l 1199 |
. . . . . . . . . 10
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β (Baseβ(Scalarβπ))) |
33 | 11 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β π) |
34 | 2, 4, 6, 5 | lmodvscl 20481 |
. . . . . . . . . 10
β’ ((π β LMod β§ π β
(Baseβ(Scalarβπ)) β§ π β π) β (π( Β·π
βπ)π) β π) |
35 | 18, 32, 33, 34 | syl3anc 1371 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (π( Β·π
βπ)π) β π) |
36 | 2, 3, 15 | grpsubadd 18907 |
. . . . . . . . 9
β’ ((π β Grp β§ (π β π β§ (π( Β·π
βπ)π) β π β§ (π( Β·π
βπ)π) β π)) β ((π(-gβπ)(π( Β·π
βπ)π)) = (π( Β·π
βπ)π) β ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π)) = π)) |
37 | 29, 22, 31, 35, 36 | syl13anc 1372 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β ((π(-gβπ)(π( Β·π
βπ)π)) = (π( Β·π
βπ)π) β ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π)) = π)) |
38 | 26, 37 | mpbird 256 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (π(-gβπ)(π( Β·π
βπ)π)) = (π( Β·π
βπ)π)) |
39 | 24, 38 | eqtr3d 2774 |
. . . . . 6
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π)) = (π( Β·π
βπ)π)) |
40 | | eqid 2732 |
. . . . . . 7
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
41 | | eqid 2732 |
. . . . . . 7
β’
(invrβ(Scalarβπ)) =
(invrβ(Scalarβπ)) |
42 | | lspexch.q |
. . . . . . . . . 10
β’ (π β (πβ{π}) β (πβ{π})) |
43 | 42 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (πβ{π}) β (πβ{π})) |
44 | | lspexch.o |
. . . . . . . . . . . 12
β’ 0 =
(0gβπ) |
45 | 17 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π β LVec) |
46 | 23 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π β π) |
47 | 25 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) |
48 | | oveq1 7412 |
. . . . . . . . . . . . . . . 16
β’ (π =
(0gβ(Scalarβπ)) β (π( Β·π
βπ)π) =
((0gβ(Scalarβπ))( Β·π
βπ)π)) |
49 | 48 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
β’ (π =
(0gβ(Scalarβπ)) β ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π)) =
(((0gβ(Scalarβπ))( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) |
50 | 2, 4, 6, 40, 44 | lmod0vs 20497 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β LMod β§ π β π) β
((0gβ(Scalarβπ))( Β·π
βπ)π) = 0 ) |
51 | 18, 33, 50 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β
((0gβ(Scalarβπ))( Β·π
βπ)π) = 0 ) |
52 | 51 | oveq1d 7420 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β
(((0gβ(Scalarβπ))( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π)) = ( 0 (+gβπ)(π( Β·π
βπ)π))) |
53 | 2, 3, 44 | lmod0vlid 20494 |
. . . . . . . . . . . . . . . . 17
β’ ((π β LMod β§ (π(
Β·π βπ)π) β π) β ( 0 (+gβπ)(π( Β·π
βπ)π)) = (π( Β·π
βπ)π)) |
54 | 18, 31, 53 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β ( 0 (+gβπ)(π( Β·π
βπ)π)) = (π( Β·π
βπ)π)) |
55 | 52, 54 | eqtrd 2772 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β
(((0gβ(Scalarβπ))( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π)) = (π( Β·π
βπ)π)) |
56 | 49, 55 | sylan9eqr 2794 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π)) = (π( Β·π
βπ)π)) |
57 | 47, 56 | eqtrd 2772 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π = (π( Β·π
βπ)π)) |
58 | 2, 6, 4, 5, 7, 18,
19, 23 | lspsneli 20604 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (π( Β·π
βπ)π) β (πβ{π})) |
59 | 58 | adantr 481 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β (π( Β·π
βπ)π) β (πβ{π})) |
60 | 57, 59 | eqeltrd 2833 |
. . . . . . . . . . . 12
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π β (πβ{π})) |
61 | | eldifsni 4792 |
. . . . . . . . . . . . . 14
β’ (π β (π β { 0 }) β π β 0 ) |
62 | 21, 61 | syl 17 |
. . . . . . . . . . . . 13
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β 0 ) |
63 | 62 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π β 0 ) |
64 | 2, 44, 7, 45, 46, 60, 63 | lspsneleq 20720 |
. . . . . . . . . . 11
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β (πβ{π}) = (πβ{π})) |
65 | 64 | ex 413 |
. . . . . . . . . 10
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (π = (0gβ(Scalarβπ)) β (πβ{π}) = (πβ{π}))) |
66 | 65 | necon3d 2961 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β ((πβ{π}) β (πβ{π}) β π β
(0gβ(Scalarβπ)))) |
67 | 43, 66 | mpd 15 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β
(0gβ(Scalarβπ))) |
68 | | eldifsn 4789 |
. . . . . . . 8
β’ (π β
((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) β (π β (Baseβ(Scalarβπ)) β§ π β
(0gβ(Scalarβπ)))) |
69 | 32, 67, 68 | sylanbrc 583 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))})) |
70 | 4 | lmodfgrp 20472 |
. . . . . . . . . . 11
β’ (π β LMod β
(Scalarβπ) β
Grp) |
71 | 27, 70 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (Scalarβπ) β Grp) |
72 | 5, 16 | grpinvcl 18868 |
. . . . . . . . . 10
β’
(((Scalarβπ)
β Grp β§ π β
(Baseβ(Scalarβπ))) β
((invgβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ))) |
73 | 71, 19, 72 | syl2anc 584 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β
((invgβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ))) |
74 | 2, 4, 6, 5 | lmodvscl 20481 |
. . . . . . . . 9
β’ ((π β LMod β§
((invgβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ)) β§ π β π) β
(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π) β π) |
75 | 18, 73, 23, 74 | syl3anc 1371 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β
(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π) β π) |
76 | 2, 3 | lmodvacl 20478 |
. . . . . . . 8
β’ ((π β LMod β§ π β π β§
(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π) β π) β (π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π)) β π) |
77 | 18, 22, 75, 76 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π)) β π) |
78 | 2, 6, 4, 5, 40, 41, 17, 69, 77, 33 | lvecinv 20718 |
. . . . . 6
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β ((π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π)) = (π( Β·π
βπ)π) β π =
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π))))) |
79 | 39, 78 | mpbid 231 |
. . . . 5
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π =
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π)))) |
80 | | eqid 2732 |
. . . . . . 7
β’
(LSubSpβπ) =
(LSubSpβπ) |
81 | 2, 80, 7, 18, 22, 23 | lspprcl 20581 |
. . . . . 6
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (πβ{π, π}) β (LSubSpβπ)) |
82 | 4 | lvecdrng 20708 |
. . . . . . . 8
β’ (π β LVec β
(Scalarβπ) β
DivRing) |
83 | 17, 82 | syl 17 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (Scalarβπ) β DivRing) |
84 | 5, 40, 41 | drnginvrcl 20329 |
. . . . . . 7
β’
(((Scalarβπ)
β DivRing β§ π
β (Baseβ(Scalarβπ)) β§ π β
(0gβ(Scalarβπ))) β
((invrβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ))) |
85 | 83, 32, 67, 84 | syl3anc 1371 |
. . . . . 6
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β
((invrβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ))) |
86 | | eqid 2732 |
. . . . . . . . . 10
β’
(1rβ(Scalarβπ)) =
(1rβ(Scalarβπ)) |
87 | 2, 4, 6, 86 | lmodvs1 20492 |
. . . . . . . . 9
β’ ((π β LMod β§ π β π) β
((1rβ(Scalarβπ))( Β·π
βπ)π) = π) |
88 | 18, 22, 87 | syl2anc 584 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β
((1rβ(Scalarβπ))( Β·π
βπ)π) = π) |
89 | 88 | oveq1d 7420 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β
(((1rβ(Scalarβπ))( Β·π
βπ)π)(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π)) = (π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π))) |
90 | 4 | lmodring 20471 |
. . . . . . . . 9
β’ (π β LMod β
(Scalarβπ) β
Ring) |
91 | 5, 86 | ringidcl 20076 |
. . . . . . . . 9
β’
((Scalarβπ)
β Ring β (1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
92 | 18, 90, 91 | 3syl 18 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β
(1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
93 | 2, 3, 6, 4, 5, 7, 18, 92, 73, 22, 23 | lsppreli 20693 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β
(((1rβ(Scalarβπ))( Β·π
βπ)π)(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π)) β (πβ{π, π})) |
94 | 89, 93 | eqeltrrd 2834 |
. . . . . 6
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β (π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π)) β (πβ{π, π})) |
95 | 4, 6, 5, 80 | lssvscl 20558 |
. . . . . 6
β’ (((π β LMod β§ (πβ{π, π}) β (LSubSpβπ)) β§
(((invrβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ)) β§ (π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π)) β (πβ{π, π}))) β
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π))) β (πβ{π, π})) |
96 | 18, 81, 85, 94, 95 | syl22anc 837 |
. . . . 5
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(+gβπ)(((invgβ(Scalarβπ))βπ)( Β·π
βπ)π))) β (πβ{π, π})) |
97 | 79, 96 | eqeltrd 2833 |
. . . 4
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) β π β (πβ{π, π})) |
98 | 97 | 3exp 1119 |
. . 3
β’ (π β ((π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β (π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π)) β π β (πβ{π, π})))) |
99 | 98 | rexlimdvv 3210 |
. 2
β’ (π β (βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))π = ((π( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π)) β π β (πβ{π, π}))) |
100 | 14, 99 | mpd 15 |
1
β’ (π β π β (πβ{π, π})) |