Step | Hyp | Ref
| Expression |
1 | | lspexch.e |
. . 3
⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
2 | | lspexch.v |
. . . 4
⊢ 𝑉 = (Base‘𝑊) |
3 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑊) = (+g‘𝑊) |
4 | | eqid 2738 |
. . . 4
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
5 | | eqid 2738 |
. . . 4
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
6 | | eqid 2738 |
. . . 4
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
7 | | lspexch.n |
. . . 4
⊢ 𝑁 = (LSpan‘𝑊) |
8 | | lspexch.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ LVec) |
9 | | lveclmod 20368 |
. . . . 5
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LMod) |
11 | | lspexch.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
12 | | lspexch.z |
. . . 4
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
13 | 2, 3, 4, 5, 6, 7, 10, 11, 12 | lspprel 20356 |
. . 3
⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)))) |
14 | 1, 13 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) |
15 | | eqid 2738 |
. . . . . . . 8
⊢
(-g‘𝑊) = (-g‘𝑊) |
16 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘(Scalar‘𝑊)) =
(invg‘(Scalar‘𝑊)) |
17 | 8 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑊 ∈ LVec) |
18 | 17, 9 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑊 ∈ LMod) |
19 | | simp2r 1199 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) |
20 | | lspexch.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
21 | 20 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
22 | 21 | eldifad 3899 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑋 ∈ 𝑉) |
23 | 12 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑍 ∈ 𝑉) |
24 | 2, 3, 15, 6, 4, 5,
16, 18, 19, 22, 23 | lmodsubvs 20179 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (𝑋(-g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍))) |
25 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) |
26 | 25 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = 𝑋) |
27 | 10 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑊 ∈ LMod) |
28 | | lmodgrp 20130 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
29 | 27, 28 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑊 ∈ Grp) |
30 | 2, 4, 6, 5 | lmodvscl 20140 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑍 ∈ 𝑉) → (𝑘( ·𝑠
‘𝑊)𝑍) ∈ 𝑉) |
31 | 18, 19, 23, 30 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (𝑘( ·𝑠
‘𝑊)𝑍) ∈ 𝑉) |
32 | | simp2l 1198 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑗 ∈ (Base‘(Scalar‘𝑊))) |
33 | 11 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑌 ∈ 𝑉) |
34 | 2, 4, 6, 5 | lmodvscl 20140 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ 𝑉) → (𝑗( ·𝑠
‘𝑊)𝑌) ∈ 𝑉) |
35 | 18, 32, 33, 34 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (𝑗( ·𝑠
‘𝑊)𝑌) ∈ 𝑉) |
36 | 2, 3, 15 | grpsubadd 18663 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Grp ∧ (𝑋 ∈ 𝑉 ∧ (𝑘( ·𝑠
‘𝑊)𝑍) ∈ 𝑉 ∧ (𝑗( ·𝑠
‘𝑊)𝑌) ∈ 𝑉)) → ((𝑋(-g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = (𝑗( ·𝑠
‘𝑊)𝑌) ↔ ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = 𝑋)) |
37 | 29, 22, 31, 35, 36 | syl13anc 1371 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → ((𝑋(-g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = (𝑗( ·𝑠
‘𝑊)𝑌) ↔ ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = 𝑋)) |
38 | 26, 37 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (𝑋(-g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = (𝑗( ·𝑠
‘𝑊)𝑌)) |
39 | 24, 38 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍)) = (𝑗( ·𝑠
‘𝑊)𝑌)) |
40 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
41 | | eqid 2738 |
. . . . . . 7
⊢
(invr‘(Scalar‘𝑊)) =
(invr‘(Scalar‘𝑊)) |
42 | | lspexch.q |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
43 | 42 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
44 | | lspexch.o |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑊) |
45 | 17 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec) |
46 | 23 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑍 ∈ 𝑉) |
47 | 25 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) |
48 | | oveq1 7282 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 =
(0g‘(Scalar‘𝑊)) → (𝑗( ·𝑠
‘𝑊)𝑌) =
((0g‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑌)) |
49 | 48 | oveq1d 7290 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 =
(0g‘(Scalar‘𝑊)) → ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) =
(((0g‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) |
50 | 2, 4, 6, 40, 44 | lmod0vs 20156 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) →
((0g‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑌) = 0 ) |
51 | 18, 33, 50 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) →
((0g‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑌) = 0 ) |
52 | 51 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) →
(((0g‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = ( 0 (+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) |
53 | 2, 3, 44 | lmod0vlid 20153 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ LMod ∧ (𝑘(
·𝑠 ‘𝑊)𝑍) ∈ 𝑉) → ( 0 (+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = (𝑘( ·𝑠
‘𝑊)𝑍)) |
54 | 18, 31, 53 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → ( 0 (+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = (𝑘( ·𝑠
‘𝑊)𝑍)) |
55 | 52, 54 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) →
(((0g‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = (𝑘( ·𝑠
‘𝑊)𝑍)) |
56 | 49, 55 | sylan9eqr 2800 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) = (𝑘( ·𝑠
‘𝑊)𝑍)) |
57 | 47, 56 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑘( ·𝑠
‘𝑊)𝑍)) |
58 | 2, 6, 4, 5, 7, 18,
19, 23 | lspsneli 20263 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (𝑘( ·𝑠
‘𝑊)𝑍) ∈ (𝑁‘{𝑍})) |
59 | 58 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠
‘𝑊)𝑍) ∈ (𝑁‘{𝑍})) |
60 | 57, 59 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑍})) |
61 | | eldifsni 4723 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) |
62 | 21, 61 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑋 ≠ 0 ) |
63 | 62 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 ≠ 0 ) |
64 | 2, 44, 7, 45, 46, 60, 63 | lspsneleq 20377 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → (𝑁‘{𝑋}) = (𝑁‘{𝑍})) |
65 | 64 | ex 413 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (𝑗 = (0g‘(Scalar‘𝑊)) → (𝑁‘{𝑋}) = (𝑁‘{𝑍}))) |
66 | 65 | necon3d 2964 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) → 𝑗 ≠
(0g‘(Scalar‘𝑊)))) |
67 | 43, 66 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑗 ≠
(0g‘(Scalar‘𝑊))) |
68 | | eldifsn 4720 |
. . . . . . . 8
⊢ (𝑗 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ↔ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑗 ≠
(0g‘(Scalar‘𝑊)))) |
69 | 32, 67, 68 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑗 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) |
70 | 4 | lmodfgrp 20132 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Grp) |
71 | 27, 70 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (Scalar‘𝑊) ∈ Grp) |
72 | 5, 16 | grpinvcl 18627 |
. . . . . . . . . 10
⊢
(((Scalar‘𝑊)
∈ Grp ∧ 𝑘 ∈
(Base‘(Scalar‘𝑊))) →
((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊))) |
73 | 71, 19, 72 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) →
((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊))) |
74 | 2, 4, 6, 5 | lmodvscl 20140 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧
((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍 ∈ 𝑉) →
(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍) ∈ 𝑉) |
75 | 18, 73, 23, 74 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) →
(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍) ∈ 𝑉) |
76 | 2, 3 | lmodvacl 20137 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧
(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍) ∈ 𝑉) → (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍)) ∈ 𝑉) |
77 | 18, 22, 75, 76 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍)) ∈ 𝑉) |
78 | 2, 6, 4, 5, 40, 41, 17, 69, 77, 33 | lvecinv 20375 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → ((𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍)) = (𝑗( ·𝑠
‘𝑊)𝑌) ↔ 𝑌 =
(((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠
‘𝑊)(𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍))))) |
79 | 39, 78 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑌 =
(((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠
‘𝑊)(𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍)))) |
80 | | eqid 2738 |
. . . . . . 7
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
81 | 2, 80, 7, 18, 22, 23 | lspprcl 20240 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑊)) |
82 | 4 | lvecdrng 20367 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec →
(Scalar‘𝑊) ∈
DivRing) |
83 | 17, 82 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (Scalar‘𝑊) ∈ DivRing) |
84 | 5, 40, 41 | drnginvrcl 20008 |
. . . . . . 7
⊢
(((Scalar‘𝑊)
∈ DivRing ∧ 𝑗
∈ (Base‘(Scalar‘𝑊)) ∧ 𝑗 ≠
(0g‘(Scalar‘𝑊))) →
((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊))) |
85 | 83, 32, 67, 84 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) →
((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊))) |
86 | | eqid 2738 |
. . . . . . . . . 10
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) |
87 | 2, 4, 6, 86 | lmodvs1 20151 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑋) = 𝑋) |
88 | 18, 22, 87 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) →
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑋) = 𝑋) |
89 | 88 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) →
(((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑋)(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍)) = (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍))) |
90 | 4 | lmodring 20131 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Ring) |
91 | 5, 86 | ringidcl 19807 |
. . . . . . . . 9
⊢
((Scalar‘𝑊)
∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
92 | 18, 90, 91 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) →
(1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
93 | 2, 3, 6, 4, 5, 7, 18, 92, 73, 22, 23 | lsppreli 20352 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) →
(((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑋)(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍})) |
94 | 89, 93 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍})) |
95 | 4, 6, 5, 80 | lssvscl 20217 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑊)) ∧
(((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍}))) →
(((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠
‘𝑊)(𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍))) ∈ (𝑁‘{𝑋, 𝑍})) |
96 | 18, 81, 85, 94, 95 | syl22anc 836 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) →
(((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠
‘𝑊)(𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠
‘𝑊)𝑍))) ∈ (𝑁‘{𝑋, 𝑍})) |
97 | 79, 96 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍))) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) |
98 | 97 | 3exp 1118 |
. . 3
⊢ (𝜑 → ((𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))) |
99 | 98 | rexlimdvv 3222 |
. 2
⊢ (𝜑 → (∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠
‘𝑊)𝑌)(+g‘𝑊)(𝑘( ·𝑠
‘𝑊)𝑍)) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))) |
100 | 14, 99 | mpd 15 |
1
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) |