MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspexch Structured version   Visualization version   GIF version

Theorem lspexch 21095
Description: Exchange property for span of a pair. TODO: see if a version with Y,Z and X,Z reversed will shorten proofs (analogous to lspexchn1 21096 versus lspexchn2 21097); look for lspexch 21095 and prcom 4713 in same proof. TODO: would a hypothesis of ¬ 𝑋 ∈ (𝑁‘{𝑍}) instead of (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) be better overall? This would be shorter and also satisfy the 𝑋0 condition. Here and also lspindp* and all proofs affected by them (all in NM's mathbox); there are 58 hypotheses with the pattern as of 24-May-2015. (Contributed by NM, 11-Apr-2015.)
Hypotheses
Ref Expression
lspexch.v 𝑉 = (Base‘𝑊)
lspexch.o 0 = (0g𝑊)
lspexch.n 𝑁 = (LSpan‘𝑊)
lspexch.w (𝜑𝑊 ∈ LVec)
lspexch.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lspexch.y (𝜑𝑌𝑉)
lspexch.z (𝜑𝑍𝑉)
lspexch.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
lspexch.e (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
lspexch (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍}))

Proof of Theorem lspexch
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspexch.e . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2 lspexch.v . . . 4 𝑉 = (Base‘𝑊)
3 eqid 2736 . . . 4 (+g𝑊) = (+g𝑊)
4 eqid 2736 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2736 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2736 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 lspexch.n . . . 4 𝑁 = (LSpan‘𝑊)
8 lspexch.w . . . . 5 (𝜑𝑊 ∈ LVec)
9 lveclmod 21069 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
108, 9syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
11 lspexch.y . . . 4 (𝜑𝑌𝑉)
12 lspexch.z . . . 4 (𝜑𝑍𝑉)
132, 3, 4, 5, 6, 7, 10, 11, 12lspprel 21057 . . 3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))))
141, 13mpbid 232 . 2 (𝜑 → ∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
15 eqid 2736 . . . . . . . 8 (-g𝑊) = (-g𝑊)
16 eqid 2736 . . . . . . . 8 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
1783ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LVec)
1817, 9syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LMod)
19 simp2r 1201 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
20 lspexch.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21203ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2221eldifad 3943 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋𝑉)
23123ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑍𝑉)
242, 3, 15, 6, 4, 5, 16, 18, 19, 22, 23lmodsubvs 20880 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)))
25 simp3 1138 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
2625eqcomd 2742 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = 𝑋)
27103ad2ant1 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LMod)
28 lmodgrp 20829 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2927, 28syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ Grp)
302, 4, 6, 5lmodvscl 20840 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍𝑉) → (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉)
3118, 19, 23, 30syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉)
32 simp2l 1200 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑗 ∈ (Base‘(Scalar‘𝑊)))
33113ad2ant1 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑌𝑉)
342, 4, 6, 5lmodvscl 20840 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑗( ·𝑠𝑊)𝑌) ∈ 𝑉)
3518, 32, 33, 34syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑗( ·𝑠𝑊)𝑌) ∈ 𝑉)
362, 3, 15grpsubadd 19016 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ (𝑋𝑉 ∧ (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉 ∧ (𝑗( ·𝑠𝑊)𝑌) ∈ 𝑉)) → ((𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌) ↔ ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = 𝑋))
3729, 22, 31, 35, 36syl13anc 1374 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌) ↔ ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = 𝑋))
3826, 37mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌))
3924, 38eqtr3d 2773 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌))
40 eqid 2736 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
41 eqid 2736 . . . . . . 7 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
42 lspexch.q . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
43423ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
44 lspexch.o . . . . . . . . . . . 12 0 = (0g𝑊)
4517adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
4623adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑍𝑉)
4725adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
48 oveq1 7417 . . . . . . . . . . . . . . . 16 (𝑗 = (0g‘(Scalar‘𝑊)) → (𝑗( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
4948oveq1d 7425 . . . . . . . . . . . . . . 15 (𝑗 = (0g‘(Scalar‘𝑊)) → ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
502, 4, 6, 40, 44lmod0vs 20857 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
5118, 33, 50syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
5251oveq1d 7425 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = ( 0 (+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
532, 3, 44lmod0vlid 20854 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉) → ( 0 (+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5418, 31, 53syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ( 0 (+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5552, 54eqtrd 2771 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5649, 55sylan9eqr 2793 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5747, 56eqtrd 2771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑘( ·𝑠𝑊)𝑍))
582, 6, 4, 5, 7, 18, 19, 23ellspsni 20963 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5958adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
6057, 59eqeltrd 2835 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑍}))
61 eldifsni 4771 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
6221, 61syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋0 )
6362adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋0 )
642, 44, 7, 45, 46, 60, 63lspsneleq 21081 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → (𝑁‘{𝑋}) = (𝑁‘{𝑍}))
6564ex 412 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑗 = (0g‘(Scalar‘𝑊)) → (𝑁‘{𝑋}) = (𝑁‘{𝑍})))
6665necon3d 2954 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) → 𝑗 ≠ (0g‘(Scalar‘𝑊))))
6743, 66mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑗 ≠ (0g‘(Scalar‘𝑊)))
68 eldifsn 4767 . . . . . . . 8 (𝑗 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑗 ≠ (0g‘(Scalar‘𝑊))))
6932, 67, 68sylanbrc 583 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑗 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
704lmodfgrp 20831 . . . . . . . . . . 11 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
7127, 70syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (Scalar‘𝑊) ∈ Grp)
725, 16grpinvcl 18975 . . . . . . . . . 10 (((Scalar‘𝑊) ∈ Grp ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
7371, 19, 72syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
742, 4, 6, 5lmodvscl 20840 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍𝑉) → (((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍) ∈ 𝑉)
7518, 73, 23, 74syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍) ∈ 𝑉)
762, 3lmodvacl 20837 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍) ∈ 𝑉) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ 𝑉)
7718, 22, 75, 76syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ 𝑉)
782, 6, 4, 5, 40, 41, 17, 69, 77, 33lvecinv 21079 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌) ↔ 𝑌 = (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)))))
7939, 78mpbid 232 . . . . 5 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑌 = (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍))))
80 eqid 2736 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
812, 80, 7, 18, 22, 23lspprcl 20940 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑊))
824lvecdrng 21068 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
8317, 82syl 17 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (Scalar‘𝑊) ∈ DivRing)
845, 40, 41drnginvrcl 20718 . . . . . . 7 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑗 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊)))
8583, 32, 67, 84syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊)))
86 eqid 2736 . . . . . . . . . 10 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
872, 4, 6, 86lmodvs1 20852 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
8818, 22, 87syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
8988oveq1d 7425 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) = (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)))
904lmodring 20830 . . . . . . . . 9 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
915, 86ringidcl 20230 . . . . . . . . 9 ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
9218, 90, 913syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
932, 3, 6, 4, 5, 7, 18, 92, 73, 22, 23lsppreli 21053 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍}))
9489, 93eqeltrrd 2836 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍}))
954, 6, 5, 80lssvscl 20917 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑊)) ∧ (((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍}))) → (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍))) ∈ (𝑁‘{𝑋, 𝑍}))
9618, 81, 85, 94, 95syl22anc 838 . . . . 5 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍))) ∈ (𝑁‘{𝑋, 𝑍}))
9779, 96eqeltrd 2835 . . . 4 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
98973exp 1119 . . 3 (𝜑 → ((𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))))
9998rexlimdvv 3201 . 2 (𝜑 → (∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
10014, 99mpd 15 1 (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  cdif 3928  {csn 4606  {cpr 4608  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458  Grpcgrp 18921  invgcminusg 18922  -gcsg 18923  1rcur 20146  Ringcrg 20198  invrcinvr 20352  DivRingcdr 20694  LModclmod 20822  LSubSpclss 20893  LSpanclspn 20933  LVecclvec 21065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lvec 21066
This theorem is referenced by:  lspexchn1  21096  lspindp1  21099  mapdh8ab  41801  mapdh8ad  41803  mapdh8b  41804  mapdh8c  41805  mapdh8e  41808
  Copyright terms: Public domain W3C validator