MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspexch Structured version   Visualization version   GIF version

Theorem lspexch 20306
Description: Exchange property for span of a pair. TODO: see if a version with Y,Z and X,Z reversed will shorten proofs (analogous to lspexchn1 20307 versus lspexchn2 20308); look for lspexch 20306 and prcom 4665 in same proof. TODO: would a hypothesis of ¬ 𝑋 ∈ (𝑁‘{𝑍}) instead of (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) be better overall? This would be shorter and also satisfy the 𝑋0 condition. Here and also lspindp* and all proofs affected by them (all in NM's mathbox); there are 58 hypotheses with the pattern as of 24-May-2015. (Contributed by NM, 11-Apr-2015.)
Hypotheses
Ref Expression
lspexch.v 𝑉 = (Base‘𝑊)
lspexch.o 0 = (0g𝑊)
lspexch.n 𝑁 = (LSpan‘𝑊)
lspexch.w (𝜑𝑊 ∈ LVec)
lspexch.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lspexch.y (𝜑𝑌𝑉)
lspexch.z (𝜑𝑍𝑉)
lspexch.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
lspexch.e (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
lspexch (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍}))

Proof of Theorem lspexch
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspexch.e . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2 lspexch.v . . . 4 𝑉 = (Base‘𝑊)
3 eqid 2738 . . . 4 (+g𝑊) = (+g𝑊)
4 eqid 2738 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2738 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2738 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 lspexch.n . . . 4 𝑁 = (LSpan‘𝑊)
8 lspexch.w . . . . 5 (𝜑𝑊 ∈ LVec)
9 lveclmod 20283 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
108, 9syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
11 lspexch.y . . . 4 (𝜑𝑌𝑉)
12 lspexch.z . . . 4 (𝜑𝑍𝑉)
132, 3, 4, 5, 6, 7, 10, 11, 12lspprel 20271 . . 3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))))
141, 13mpbid 231 . 2 (𝜑 → ∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
15 eqid 2738 . . . . . . . 8 (-g𝑊) = (-g𝑊)
16 eqid 2738 . . . . . . . 8 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
1783ad2ant1 1131 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LVec)
1817, 9syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LMod)
19 simp2r 1198 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
20 lspexch.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21203ad2ant1 1131 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2221eldifad 3895 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋𝑉)
23123ad2ant1 1131 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑍𝑉)
242, 3, 15, 6, 4, 5, 16, 18, 19, 22, 23lmodsubvs 20094 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)))
25 simp3 1136 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
2625eqcomd 2744 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = 𝑋)
27103ad2ant1 1131 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LMod)
28 lmodgrp 20045 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2927, 28syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑊 ∈ Grp)
302, 4, 6, 5lmodvscl 20055 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍𝑉) → (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉)
3118, 19, 23, 30syl3anc 1369 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉)
32 simp2l 1197 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑗 ∈ (Base‘(Scalar‘𝑊)))
33113ad2ant1 1131 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑌𝑉)
342, 4, 6, 5lmodvscl 20055 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑗( ·𝑠𝑊)𝑌) ∈ 𝑉)
3518, 32, 33, 34syl3anc 1369 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑗( ·𝑠𝑊)𝑌) ∈ 𝑉)
362, 3, 15grpsubadd 18578 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ (𝑋𝑉 ∧ (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉 ∧ (𝑗( ·𝑠𝑊)𝑌) ∈ 𝑉)) → ((𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌) ↔ ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = 𝑋))
3729, 22, 31, 35, 36syl13anc 1370 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌) ↔ ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = 𝑋))
3826, 37mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(-g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌))
3924, 38eqtr3d 2780 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌))
40 eqid 2738 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
41 eqid 2738 . . . . . . 7 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
42 lspexch.q . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
43423ad2ant1 1131 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
44 lspexch.o . . . . . . . . . . . 12 0 = (0g𝑊)
4517adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
4623adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑍𝑉)
4725adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
48 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝑗 = (0g‘(Scalar‘𝑊)) → (𝑗( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
4948oveq1d 7270 . . . . . . . . . . . . . . 15 (𝑗 = (0g‘(Scalar‘𝑊)) → ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
502, 4, 6, 40, 44lmod0vs 20071 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
5118, 33, 50syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
5251oveq1d 7270 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = ( 0 (+g𝑊)(𝑘( ·𝑠𝑊)𝑍)))
532, 3, 44lmod0vlid 20068 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑍) ∈ 𝑉) → ( 0 (+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5418, 31, 53syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ( 0 (+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5552, 54eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5649, 55sylan9eqr 2801 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) = (𝑘( ·𝑠𝑊)𝑍))
5747, 56eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑘( ·𝑠𝑊)𝑍))
582, 6, 4, 5, 7, 18, 19, 23lspsneli 20178 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5958adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
6057, 59eqeltrd 2839 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑍}))
61 eldifsni 4720 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
6221, 61syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑋0 )
6362adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → 𝑋0 )
642, 44, 7, 45, 46, 60, 63lspsneleq 20292 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) ∧ 𝑗 = (0g‘(Scalar‘𝑊))) → (𝑁‘{𝑋}) = (𝑁‘{𝑍}))
6564ex 412 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑗 = (0g‘(Scalar‘𝑊)) → (𝑁‘{𝑋}) = (𝑁‘{𝑍})))
6665necon3d 2963 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) → 𝑗 ≠ (0g‘(Scalar‘𝑊))))
6743, 66mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑗 ≠ (0g‘(Scalar‘𝑊)))
68 eldifsn 4717 . . . . . . . 8 (𝑗 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑗 ≠ (0g‘(Scalar‘𝑊))))
6932, 67, 68sylanbrc 582 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑗 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
704lmodfgrp 20047 . . . . . . . . . . 11 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
7127, 70syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (Scalar‘𝑊) ∈ Grp)
725, 16grpinvcl 18542 . . . . . . . . . 10 (((Scalar‘𝑊) ∈ Grp ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
7371, 19, 72syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
742, 4, 6, 5lmodvscl 20055 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((invg‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍𝑉) → (((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍) ∈ 𝑉)
7518, 73, 23, 74syl3anc 1369 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍) ∈ 𝑉)
762, 3lmodvacl 20052 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍) ∈ 𝑉) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ 𝑉)
7718, 22, 75, 76syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ 𝑉)
782, 6, 4, 5, 40, 41, 17, 69, 77, 33lvecinv 20290 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) = (𝑗( ·𝑠𝑊)𝑌) ↔ 𝑌 = (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)))))
7939, 78mpbid 231 . . . . 5 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑌 = (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍))))
80 eqid 2738 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
812, 80, 7, 18, 22, 23lspprcl 20155 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑊))
824lvecdrng 20282 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
8317, 82syl 17 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (Scalar‘𝑊) ∈ DivRing)
845, 40, 41drnginvrcl 19923 . . . . . . 7 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑗 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊)))
8583, 32, 67, 84syl3anc 1369 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊)))
86 eqid 2738 . . . . . . . . . 10 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
872, 4, 6, 86lmodvs1 20066 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
8818, 22, 87syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
8988oveq1d 7270 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) = (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)))
904lmodring 20046 . . . . . . . . 9 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
915, 86ringidcl 19722 . . . . . . . . 9 ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
9218, 90, 913syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
932, 3, 6, 4, 5, 7, 18, 92, 73, 22, 23lsppreli 20267 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍}))
9489, 93eqeltrrd 2840 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍}))
954, 6, 5, 80lssvscl 20132 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑊)) ∧ (((invr‘(Scalar‘𝑊))‘𝑗) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑋, 𝑍}))) → (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍))) ∈ (𝑁‘{𝑋, 𝑍}))
9618, 81, 85, 94, 95syl22anc 835 . . . . 5 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑗)( ·𝑠𝑊)(𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)𝑍))) ∈ (𝑁‘{𝑋, 𝑍}))
9779, 96eqeltrd 2839 . . . 4 ((𝜑 ∧ (𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍))) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
98973exp 1117 . . 3 (𝜑 → ((𝑗 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))))
9998rexlimdvv 3221 . 2 (𝜑 → (∃𝑗 ∈ (Base‘(Scalar‘𝑊))∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑗( ·𝑠𝑊)𝑌)(+g𝑊)(𝑘( ·𝑠𝑊)𝑍)) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
10014, 99mpd 15 1 (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  -gcsg 18494  1rcur 19652  Ringcrg 19698  invrcinvr 19828  DivRingcdr 19906  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280
This theorem is referenced by:  lspexchn1  20307  lspindp1  20310  mapdh8ab  39718  mapdh8ad  39720  mapdh8b  39721  mapdh8c  39722  mapdh8e  39725
  Copyright terms: Public domain W3C validator