MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsssn0 Structured version   Visualization version   GIF version

Theorem lsssn0 20946
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z 0 = (0g𝑊)
lss0cl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsssn0 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)

Proof of Theorem lsssn0
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2738 . 2 (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2738 . 2 (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2738 . 2 (𝑊 ∈ LMod → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2738 . 2 (𝑊 ∈ LMod → (+g𝑊) = (+g𝑊))
5 eqidd 2738 . 2 (𝑊 ∈ LMod → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lss0cl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 11 . 2 (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊))
8 eqid 2737 . . . 4 (Base‘𝑊) = (Base‘𝑊)
9 lss0cl.z . . . 4 0 = (0g𝑊)
108, 9lmod0vcl 20889 . . 3 (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊))
1110snssd 4809 . 2 (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝑊))
129fvexi 6920 . . . 4 0 ∈ V
1312snnz 4776 . . 3 { 0 } ≠ ∅
1413a1i 11 . 2 (𝑊 ∈ LMod → { 0 } ≠ ∅)
15 simpr2 1196 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 ∈ { 0 })
16 elsni 4643 . . . . . . . 8 (𝑎 ∈ { 0 } → 𝑎 = 0 )
1715, 16syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 = 0 )
1817oveq2d 7447 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊)𝑎) = (𝑥( ·𝑠𝑊) 0 ))
19 eqid 2737 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2737 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
21 eqid 2737 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2219, 20, 21, 9lmodvs0 20894 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝑥( ·𝑠𝑊) 0 ) = 0 )
23223ad2antr1 1189 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊) 0 ) = 0 )
2418, 23eqtrd 2777 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊)𝑎) = 0 )
25 simpr3 1197 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 ∈ { 0 })
26 elsni 4643 . . . . . 6 (𝑏 ∈ { 0 } → 𝑏 = 0 )
2725, 26syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 = 0 )
2824, 27oveq12d 7449 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = ( 0 (+g𝑊) 0 ))
29 eqid 2737 . . . . . . 7 (+g𝑊) = (+g𝑊)
308, 29, 9lmod0vlid 20890 . . . . . 6 ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ( 0 (+g𝑊) 0 ) = 0 )
3110, 30mpdan 687 . . . . 5 (𝑊 ∈ LMod → ( 0 (+g𝑊) 0 ) = 0 )
3231adantr 480 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ( 0 (+g𝑊) 0 ) = 0 )
3328, 32eqtrd 2777 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 )
34 ovex 7464 . . . 4 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V
3534elsn 4641 . . 3 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 )
3633, 35sylibr 234 . 2 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 })
371, 2, 3, 4, 5, 7, 11, 14, 36islssd 20933 1 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  c0 4333  {csn 4626  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  LModclmod 20858  LSubSpclss 20929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930
This theorem is referenced by:  lspsn0  21006  lsp0  21007  lmhmkerlss  21050  lidl0ALT  21238  lsatcv0  39032  lsatcveq0  39033  lsat0cv  39034  lsatcv0eq  39048  dochsat  41385  mapd0  41667  mapdcnvatN  41668  mapdat  41669  mapdn0  41671  hdmapeq0  41846
  Copyright terms: Public domain W3C validator