| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsssn0 | Structured version Visualization version GIF version | ||
| Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lss0cl.z | ⊢ 0 = (0g‘𝑊) |
| lss0cl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lsssn0 | ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2734 | . 2 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
| 2 | eqidd 2734 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) | |
| 3 | eqidd 2734 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘𝑊) = (Base‘𝑊)) | |
| 4 | eqidd 2734 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
| 5 | eqidd 2734 | . 2 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊)) | |
| 6 | lss0cl.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
| 8 | eqid 2733 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 9 | lss0cl.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 10 | 8, 9 | lmod0vcl 20828 | . . 3 ⊢ (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊)) |
| 11 | 10 | snssd 4762 | . 2 ⊢ (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝑊)) |
| 12 | 9 | fvexi 6844 | . . . 4 ⊢ 0 ∈ V |
| 13 | 12 | snnz 4730 | . . 3 ⊢ { 0 } ≠ ∅ |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → { 0 } ≠ ∅) |
| 15 | simpr2 1196 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 ∈ { 0 }) | |
| 16 | elsni 4594 | . . . . . . . 8 ⊢ (𝑎 ∈ { 0 } → 𝑎 = 0 ) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 = 0 ) |
| 18 | 17 | oveq2d 7370 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊)𝑎) = (𝑥( ·𝑠 ‘𝑊) 0 )) |
| 19 | eqid 2733 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 20 | eqid 2733 | . . . . . . . 8 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 21 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 22 | 19, 20, 21, 9 | lmodvs0 20833 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝑥( ·𝑠 ‘𝑊) 0 ) = 0 ) |
| 23 | 22 | 3ad2antr1 1189 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊) 0 ) = 0 ) |
| 24 | 18, 23 | eqtrd 2768 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊)𝑎) = 0 ) |
| 25 | simpr3 1197 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 ∈ { 0 }) | |
| 26 | elsni 4594 | . . . . . 6 ⊢ (𝑏 ∈ { 0 } → 𝑏 = 0 ) | |
| 27 | 25, 26 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 = 0 ) |
| 28 | 24, 27 | oveq12d 7372 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = ( 0 (+g‘𝑊) 0 )) |
| 29 | eqid 2733 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 30 | 8, 29, 9 | lmod0vlid 20829 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ( 0 (+g‘𝑊) 0 ) = 0 ) |
| 31 | 10, 30 | mpdan 687 | . . . . 5 ⊢ (𝑊 ∈ LMod → ( 0 (+g‘𝑊) 0 ) = 0 ) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ( 0 (+g‘𝑊) 0 ) = 0 ) |
| 33 | 28, 32 | eqtrd 2768 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 ) |
| 34 | ovex 7387 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V | |
| 35 | 34 | elsn 4592 | . . 3 ⊢ (((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 ) |
| 36 | 33, 35 | sylibr 234 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 }) |
| 37 | 1, 2, 3, 4, 5, 7, 11, 14, 36 | islssd 20872 | 1 ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 {csn 4577 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 Scalarcsca 17168 ·𝑠 cvsca 17169 0gc0g 17347 LModclmod 20797 LSubSpclss 20868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-lmod 20799 df-lss 20869 |
| This theorem is referenced by: lspsn0 20945 lsp0 20946 lmhmkerlss 20989 lidl0ALT 21169 lsatcv0 39153 lsatcveq0 39154 lsat0cv 39155 lsatcv0eq 39169 dochsat 41505 mapd0 41787 mapdcnvatN 41788 mapdat 41789 mapdn0 41791 hdmapeq0 41966 |
| Copyright terms: Public domain | W3C validator |