![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsssn0 | Structured version Visualization version GIF version |
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lss0cl.z | ⊢ 0 = (0g‘𝑊) |
lss0cl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lsssn0 | ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2737 | . 2 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
2 | eqidd 2737 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) | |
3 | eqidd 2737 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘𝑊) = (Base‘𝑊)) | |
4 | eqidd 2737 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
5 | eqidd 2737 | . 2 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊)) | |
6 | lss0cl.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 6 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
8 | eqid 2736 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
9 | lss0cl.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
10 | 8, 9 | lmod0vcl 20351 | . . 3 ⊢ (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊)) |
11 | 10 | snssd 4769 | . 2 ⊢ (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝑊)) |
12 | 9 | fvexi 6856 | . . . 4 ⊢ 0 ∈ V |
13 | 12 | snnz 4737 | . . 3 ⊢ { 0 } ≠ ∅ |
14 | 13 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → { 0 } ≠ ∅) |
15 | simpr2 1195 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 ∈ { 0 }) | |
16 | elsni 4603 | . . . . . . . 8 ⊢ (𝑎 ∈ { 0 } → 𝑎 = 0 ) | |
17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 = 0 ) |
18 | 17 | oveq2d 7373 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊)𝑎) = (𝑥( ·𝑠 ‘𝑊) 0 )) |
19 | eqid 2736 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
20 | eqid 2736 | . . . . . . . 8 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
21 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
22 | 19, 20, 21, 9 | lmodvs0 20356 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝑥( ·𝑠 ‘𝑊) 0 ) = 0 ) |
23 | 22 | 3ad2antr1 1188 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊) 0 ) = 0 ) |
24 | 18, 23 | eqtrd 2776 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊)𝑎) = 0 ) |
25 | simpr3 1196 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 ∈ { 0 }) | |
26 | elsni 4603 | . . . . . 6 ⊢ (𝑏 ∈ { 0 } → 𝑏 = 0 ) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 = 0 ) |
28 | 24, 27 | oveq12d 7375 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = ( 0 (+g‘𝑊) 0 )) |
29 | eqid 2736 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
30 | 8, 29, 9 | lmod0vlid 20352 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ( 0 (+g‘𝑊) 0 ) = 0 ) |
31 | 10, 30 | mpdan 685 | . . . . 5 ⊢ (𝑊 ∈ LMod → ( 0 (+g‘𝑊) 0 ) = 0 ) |
32 | 31 | adantr 481 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ( 0 (+g‘𝑊) 0 ) = 0 ) |
33 | 28, 32 | eqtrd 2776 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 ) |
34 | ovex 7390 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V | |
35 | 34 | elsn 4601 | . . 3 ⊢ (((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 ) |
36 | 33, 35 | sylibr 233 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 }) |
37 | 1, 2, 3, 4, 5, 7, 11, 14, 36 | islssd 20396 | 1 ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∅c0 4282 {csn 4586 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 +gcplusg 17133 Scalarcsca 17136 ·𝑠 cvsca 17137 0gc0g 17321 LModclmod 20322 LSubSpclss 20392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-mgp 19897 df-ring 19966 df-lmod 20324 df-lss 20393 |
This theorem is referenced by: lspsn0 20469 lsp0 20470 lmhmkerlss 20512 lidl0 20689 lsatcv0 37493 lsatcveq0 37494 lsat0cv 37495 lsatcv0eq 37509 dochsat 39846 mapd0 40128 mapdcnvatN 40129 mapdat 40130 mapdn0 40132 hdmapeq0 40307 |
Copyright terms: Public domain | W3C validator |