| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsssn0 | Structured version Visualization version GIF version | ||
| Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lss0cl.z | ⊢ 0 = (0g‘𝑊) |
| lss0cl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lsssn0 | ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2735 | . 2 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
| 2 | eqidd 2735 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) | |
| 3 | eqidd 2735 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘𝑊) = (Base‘𝑊)) | |
| 4 | eqidd 2735 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
| 5 | eqidd 2735 | . 2 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊)) | |
| 6 | lss0cl.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
| 8 | eqid 2734 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 9 | lss0cl.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 10 | 8, 9 | lmod0vcl 20858 | . . 3 ⊢ (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊)) |
| 11 | 10 | snssd 4789 | . 2 ⊢ (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝑊)) |
| 12 | 9 | fvexi 6900 | . . . 4 ⊢ 0 ∈ V |
| 13 | 12 | snnz 4756 | . . 3 ⊢ { 0 } ≠ ∅ |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → { 0 } ≠ ∅) |
| 15 | simpr2 1195 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 ∈ { 0 }) | |
| 16 | elsni 4623 | . . . . . . . 8 ⊢ (𝑎 ∈ { 0 } → 𝑎 = 0 ) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 = 0 ) |
| 18 | 17 | oveq2d 7429 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊)𝑎) = (𝑥( ·𝑠 ‘𝑊) 0 )) |
| 19 | eqid 2734 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 20 | eqid 2734 | . . . . . . . 8 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 21 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 22 | 19, 20, 21, 9 | lmodvs0 20863 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝑥( ·𝑠 ‘𝑊) 0 ) = 0 ) |
| 23 | 22 | 3ad2antr1 1188 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊) 0 ) = 0 ) |
| 24 | 18, 23 | eqtrd 2769 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊)𝑎) = 0 ) |
| 25 | simpr3 1196 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 ∈ { 0 }) | |
| 26 | elsni 4623 | . . . . . 6 ⊢ (𝑏 ∈ { 0 } → 𝑏 = 0 ) | |
| 27 | 25, 26 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 = 0 ) |
| 28 | 24, 27 | oveq12d 7431 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = ( 0 (+g‘𝑊) 0 )) |
| 29 | eqid 2734 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 30 | 8, 29, 9 | lmod0vlid 20859 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ( 0 (+g‘𝑊) 0 ) = 0 ) |
| 31 | 10, 30 | mpdan 687 | . . . . 5 ⊢ (𝑊 ∈ LMod → ( 0 (+g‘𝑊) 0 ) = 0 ) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ( 0 (+g‘𝑊) 0 ) = 0 ) |
| 33 | 28, 32 | eqtrd 2769 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 ) |
| 34 | ovex 7446 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V | |
| 35 | 34 | elsn 4621 | . . 3 ⊢ (((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 ) |
| 36 | 33, 35 | sylibr 234 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 }) |
| 37 | 1, 2, 3, 4, 5, 7, 11, 14, 36 | islssd 20902 | 1 ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 {csn 4606 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 +gcplusg 17274 Scalarcsca 17277 ·𝑠 cvsca 17278 0gc0g 17456 LModclmod 20827 LSubSpclss 20898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17287 df-0g 17458 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-lmod 20829 df-lss 20899 |
| This theorem is referenced by: lspsn0 20975 lsp0 20976 lmhmkerlss 21019 lidl0ALT 21201 lsatcv0 39007 lsatcveq0 39008 lsat0cv 39009 lsatcv0eq 39023 dochsat 41360 mapd0 41642 mapdcnvatN 41643 mapdat 41644 mapdn0 41646 hdmapeq0 41821 |
| Copyright terms: Public domain | W3C validator |