MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsssn0 Structured version   Visualization version   GIF version

Theorem lsssn0 20124
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z 0 = (0g𝑊)
lss0cl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsssn0 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)

Proof of Theorem lsssn0
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . 2 (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2739 . 2 (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2739 . 2 (𝑊 ∈ LMod → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2739 . 2 (𝑊 ∈ LMod → (+g𝑊) = (+g𝑊))
5 eqidd 2739 . 2 (𝑊 ∈ LMod → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lss0cl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 11 . 2 (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊))
8 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
9 lss0cl.z . . . 4 0 = (0g𝑊)
108, 9lmod0vcl 20067 . . 3 (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊))
1110snssd 4739 . 2 (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝑊))
129fvexi 6770 . . . 4 0 ∈ V
1312snnz 4709 . . 3 { 0 } ≠ ∅
1413a1i 11 . 2 (𝑊 ∈ LMod → { 0 } ≠ ∅)
15 simpr2 1193 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 ∈ { 0 })
16 elsni 4575 . . . . . . . 8 (𝑎 ∈ { 0 } → 𝑎 = 0 )
1715, 16syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 = 0 )
1817oveq2d 7271 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊)𝑎) = (𝑥( ·𝑠𝑊) 0 ))
19 eqid 2738 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2738 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
21 eqid 2738 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2219, 20, 21, 9lmodvs0 20072 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝑥( ·𝑠𝑊) 0 ) = 0 )
23223ad2antr1 1186 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊) 0 ) = 0 )
2418, 23eqtrd 2778 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊)𝑎) = 0 )
25 simpr3 1194 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 ∈ { 0 })
26 elsni 4575 . . . . . 6 (𝑏 ∈ { 0 } → 𝑏 = 0 )
2725, 26syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 = 0 )
2824, 27oveq12d 7273 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = ( 0 (+g𝑊) 0 ))
29 eqid 2738 . . . . . . 7 (+g𝑊) = (+g𝑊)
308, 29, 9lmod0vlid 20068 . . . . . 6 ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ( 0 (+g𝑊) 0 ) = 0 )
3110, 30mpdan 683 . . . . 5 (𝑊 ∈ LMod → ( 0 (+g𝑊) 0 ) = 0 )
3231adantr 480 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ( 0 (+g𝑊) 0 ) = 0 )
3328, 32eqtrd 2778 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 )
34 ovex 7288 . . . 4 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V
3534elsn 4573 . . 3 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 )
3633, 35sylibr 233 . 2 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 })
371, 2, 3, 4, 5, 7, 11, 14, 36islssd 20112 1 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  c0 4253  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LModclmod 20038  LSubSpclss 20108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ring 19700  df-lmod 20040  df-lss 20109
This theorem is referenced by:  lspsn0  20185  lsp0  20186  lmhmkerlss  20228  lidl0  20403  lsatcv0  36972  lsatcveq0  36973  lsat0cv  36974  lsatcv0eq  36988  dochsat  39324  mapd0  39606  mapdcnvatN  39607  mapdat  39608  mapdn0  39610  hdmapeq0  39785
  Copyright terms: Public domain W3C validator