Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsssn0 | Structured version Visualization version GIF version |
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lss0cl.z | ⊢ 0 = (0g‘𝑊) |
lss0cl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lsssn0 | ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . 2 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
2 | eqidd 2739 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) | |
3 | eqidd 2739 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘𝑊) = (Base‘𝑊)) | |
4 | eqidd 2739 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
5 | eqidd 2739 | . 2 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊)) | |
6 | lss0cl.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 6 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
8 | eqid 2738 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
9 | lss0cl.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
10 | 8, 9 | lmod0vcl 20067 | . . 3 ⊢ (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊)) |
11 | 10 | snssd 4739 | . 2 ⊢ (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝑊)) |
12 | 9 | fvexi 6770 | . . . 4 ⊢ 0 ∈ V |
13 | 12 | snnz 4709 | . . 3 ⊢ { 0 } ≠ ∅ |
14 | 13 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → { 0 } ≠ ∅) |
15 | simpr2 1193 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 ∈ { 0 }) | |
16 | elsni 4575 | . . . . . . . 8 ⊢ (𝑎 ∈ { 0 } → 𝑎 = 0 ) | |
17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 = 0 ) |
18 | 17 | oveq2d 7271 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊)𝑎) = (𝑥( ·𝑠 ‘𝑊) 0 )) |
19 | eqid 2738 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
20 | eqid 2738 | . . . . . . . 8 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
21 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
22 | 19, 20, 21, 9 | lmodvs0 20072 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝑥( ·𝑠 ‘𝑊) 0 ) = 0 ) |
23 | 22 | 3ad2antr1 1186 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊) 0 ) = 0 ) |
24 | 18, 23 | eqtrd 2778 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠 ‘𝑊)𝑎) = 0 ) |
25 | simpr3 1194 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 ∈ { 0 }) | |
26 | elsni 4575 | . . . . . 6 ⊢ (𝑏 ∈ { 0 } → 𝑏 = 0 ) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 = 0 ) |
28 | 24, 27 | oveq12d 7273 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = ( 0 (+g‘𝑊) 0 )) |
29 | eqid 2738 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
30 | 8, 29, 9 | lmod0vlid 20068 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ( 0 (+g‘𝑊) 0 ) = 0 ) |
31 | 10, 30 | mpdan 683 | . . . . 5 ⊢ (𝑊 ∈ LMod → ( 0 (+g‘𝑊) 0 ) = 0 ) |
32 | 31 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ( 0 (+g‘𝑊) 0 ) = 0 ) |
33 | 28, 32 | eqtrd 2778 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 ) |
34 | ovex 7288 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V | |
35 | 34 | elsn 4573 | . . 3 ⊢ (((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 ) |
36 | 33, 35 | sylibr 233 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 }) |
37 | 1, 2, 3, 4, 5, 7, 11, 14, 36 | islssd 20112 | 1 ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 LModclmod 20038 LSubSpclss 20108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-mgp 19636 df-ring 19700 df-lmod 20040 df-lss 20109 |
This theorem is referenced by: lspsn0 20185 lsp0 20186 lmhmkerlss 20228 lidl0 20403 lsatcv0 36972 lsatcveq0 36973 lsat0cv 36974 lsatcv0eq 36988 dochsat 39324 mapd0 39606 mapdcnvatN 39607 mapdat 39608 mapdn0 39610 hdmapeq0 39785 |
Copyright terms: Public domain | W3C validator |