MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vcl Structured version   Visualization version   GIF version

Theorem lmod0vcl 20797
Description: The zero vector is a vector. (ax-hv0cl 30932 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
0vcl.v 𝑉 = (Base‘𝑊)
0vcl.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vcl (𝑊 ∈ LMod → 0𝑉)

Proof of Theorem lmod0vcl
StepHypRef Expression
1 lmodgrp 20773 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 0vcl.v . . 3 𝑉 = (Base‘𝑊)
3 0vcl.z . . 3 0 = (0g𝑊)
42, 3grpidcl 18897 . 2 (𝑊 ∈ Grp → 0𝑉)
51, 4syl 17 1 (𝑊 ∈ LMod → 0𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  Basecbs 17179  0gc0g 17402  Grpcgrp 18865  LModclmod 20766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-lmod 20768
This theorem is referenced by:  lmodvs0  20802  lmodfopne  20806  lsssn0  20854  lspun0  20917  lsppr0  20999  lspsneq  21032  lspprat  21063  ip0r  21546  ocvlss  21581  nmhmcn  25020  lfl0  39058  lflmul  39061  lkrlss  39088  dochexmid  41462  lcfl8  41496  lcd0vcl  41608  mapdh6bN  41731  mapdh6cN  41732  hdmap1val0  41793  hdmap1l6b  41805  hdmap1l6c  41806  hdmapval0  41827  hdmaprnlem17N  41857  hdmap14lem13  41874  hdmaplkr  41907  lcoel0  48417
  Copyright terms: Public domain W3C validator