| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmod0vcl | Structured version Visualization version GIF version | ||
| Description: The zero vector is a vector. (ax-hv0cl 30978 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| 0vcl.v | ⊢ 𝑉 = (Base‘𝑊) |
| 0vcl.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| lmod0vcl | ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20798 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | 0vcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | 0vcl.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 4 | 2, 3 | grpidcl 18875 | . 2 ⊢ (𝑊 ∈ Grp → 0 ∈ 𝑉) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17117 0gc0g 17340 Grpcgrp 18843 LModclmod 20791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-lmod 20793 |
| This theorem is referenced by: lmodvs0 20827 lmodfopne 20831 lsssn0 20879 lspun0 20942 lsppr0 21024 lspsneq 21057 lspprat 21088 ip0r 21572 ocvlss 21607 nmhmcn 25045 lfl0 39103 lflmul 39106 lkrlss 39133 dochexmid 41506 lcfl8 41540 lcd0vcl 41652 mapdh6bN 41775 mapdh6cN 41776 hdmap1val0 41837 hdmap1l6b 41849 hdmap1l6c 41850 hdmapval0 41871 hdmaprnlem17N 41901 hdmap14lem13 41918 hdmaplkr 41951 lcoel0 48459 |
| Copyright terms: Public domain | W3C validator |