MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vcl Structured version   Visualization version   GIF version

Theorem lmod0vcl 20067
Description: The zero vector is a vector. (ax-hv0cl 29266 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
0vcl.v 𝑉 = (Base‘𝑊)
0vcl.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vcl (𝑊 ∈ LMod → 0𝑉)

Proof of Theorem lmod0vcl
StepHypRef Expression
1 lmodgrp 20045 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 0vcl.v . . 3 𝑉 = (Base‘𝑊)
3 0vcl.z . . 3 0 = (0g𝑊)
42, 3grpidcl 18522 . 2 (𝑊 ∈ Grp → 0𝑉)
51, 4syl 17 1 (𝑊 ∈ LMod → 0𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  Basecbs 16840  0gc0g 17067  Grpcgrp 18492  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-riota 7212  df-ov 7258  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-lmod 20040
This theorem is referenced by:  lmodvs0  20072  lmodfopne  20076  lsssn0  20124  lspun0  20188  lsppr0  20269  lspsneq  20299  lspprat  20330  ip0r  20754  ocvlss  20789  nmhmcn  24189  lfl0  37006  lflmul  37009  lkrlss  37036  dochexmid  39409  lcfl8  39443  lcd0vcl  39555  mapdh6bN  39678  mapdh6cN  39679  hdmap1val0  39740  hdmap1l6b  39752  hdmap1l6c  39753  hdmapval0  39774  hdmaprnlem17N  39804  hdmap14lem13  39821  hdmaplkr  39854  lcoel0  45657
  Copyright terms: Public domain W3C validator