Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmod0vcl | Structured version Visualization version GIF version |
Description: The zero vector is a vector. (ax-hv0cl 29266 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
0vcl.v | ⊢ 𝑉 = (Base‘𝑊) |
0vcl.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
lmod0vcl | ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20045 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | 0vcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | 0vcl.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
4 | 2, 3 | grpidcl 18522 | . 2 ⊢ (𝑊 ∈ Grp → 0 ∈ 𝑉) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Basecbs 16840 0gc0g 17067 Grpcgrp 18492 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-lmod 20040 |
This theorem is referenced by: lmodvs0 20072 lmodfopne 20076 lsssn0 20124 lspun0 20188 lsppr0 20269 lspsneq 20299 lspprat 20330 ip0r 20754 ocvlss 20789 nmhmcn 24189 lfl0 37006 lflmul 37009 lkrlss 37036 dochexmid 39409 lcfl8 39443 lcd0vcl 39555 mapdh6bN 39678 mapdh6cN 39679 hdmap1val0 39740 hdmap1l6b 39752 hdmap1l6c 39753 hdmapval0 39774 hdmaprnlem17N 39804 hdmap14lem13 39821 hdmaplkr 39854 lcoel0 45657 |
Copyright terms: Public domain | W3C validator |