MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vcl Structured version   Visualization version   GIF version

Theorem lmod0vcl 20822
Description: The zero vector is a vector. (ax-hv0cl 30978 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
0vcl.v 𝑉 = (Base‘𝑊)
0vcl.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vcl (𝑊 ∈ LMod → 0𝑉)

Proof of Theorem lmod0vcl
StepHypRef Expression
1 lmodgrp 20798 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 0vcl.v . . 3 𝑉 = (Base‘𝑊)
3 0vcl.z . . 3 0 = (0g𝑊)
42, 3grpidcl 18875 . 2 (𝑊 ∈ Grp → 0𝑉)
51, 4syl 17 1 (𝑊 ∈ LMod → 0𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  Basecbs 17117  0gc0g 17340  Grpcgrp 18843  LModclmod 20791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-lmod 20793
This theorem is referenced by:  lmodvs0  20827  lmodfopne  20831  lsssn0  20879  lspun0  20942  lsppr0  21024  lspsneq  21057  lspprat  21088  ip0r  21572  ocvlss  21607  nmhmcn  25045  lfl0  39103  lflmul  39106  lkrlss  39133  dochexmid  41506  lcfl8  41540  lcd0vcl  41652  mapdh6bN  41775  mapdh6cN  41776  hdmap1val0  41837  hdmap1l6b  41849  hdmap1l6c  41850  hdmapval0  41871  hdmaprnlem17N  41901  hdmap14lem13  41918  hdmaplkr  41951  lcoel0  48459
  Copyright terms: Public domain W3C validator