| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version | ||
| Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2736 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2736 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | eqid 2736 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | islss 20896 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
| 8 | 7 | simp1bi 1145 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ⊆ wss 3931 ∅c0 4313 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Scalarcsca 17279 ·𝑠 cvsca 17280 LSubSpclss 20893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-lss 20894 |
| This theorem is referenced by: lssel 20899 lssuni 20901 00lss 20903 lsssubg 20919 islss3 20921 lsslss 20923 lssintcl 20926 lssmre 20928 lssacs 20929 lspid 20944 lspssv 20945 lspssp 20950 lsslsp 20977 lsslspOLD 20978 lmhmima 21010 reslmhm 21015 lsmsp 21049 pj1lmhm 21063 lsppratlem2 21114 lsppratlem3 21115 lsppratlem4 21116 lspprat 21119 lbsextlem3 21126 lidlss 21178 ocvin 21639 pjdm2 21676 pjff 21677 pjf2 21679 pjfo 21680 pjcss 21681 frlmgsum 21737 frlmsplit2 21738 lsslindf 21795 lsslinds 21796 cphsscph 25208 lssbn 25309 minveclem1 25381 minveclem2 25383 minveclem3a 25384 minveclem3b 25385 minveclem3 25386 minveclem4a 25387 minveclem4b 25388 minveclem4 25389 minveclem6 25391 minveclem7 25392 pjthlem1 25394 pjthlem2 25395 pjth 25396 lssdimle 33652 ply1degltdimlem 33667 ply1degltdim 33668 dimlssid 33677 islshpsm 39003 lshpnelb 39007 lshpnel2N 39008 lshpcmp 39011 lsatssv 39021 lssats 39035 lpssat 39036 lssatle 39038 lssat 39039 islshpcv 39076 lkrssv 39119 lkrlsp 39125 dvhopellsm 41141 dvadiaN 41152 dihss 41275 dihrnss 41302 dochord2N 41395 dochord3 41396 dihoml4 41401 dochsat 41407 dochshpncl 41408 dochnoncon 41415 djhlsmcl 41438 dihjat1lem 41452 dochsatshp 41475 dochsatshpb 41476 dochshpsat 41478 dochexmidlem2 41485 dochexmidlem5 41488 dochexmidlem6 41489 dochexmidlem7 41490 dochexmidlem8 41491 lclkrlem2p 41546 lclkrlem2v 41552 lcfrlem5 41570 lcfr 41609 mapdpglem17N 41712 mapdpglem18 41713 mapdpglem21 41716 islssfg 43069 islssfg2 43070 lnmlsslnm 43080 kercvrlsm 43082 lnmepi 43084 filnm 43089 gsumlsscl 48335 lincellss 48382 ellcoellss 48391 |
| Copyright terms: Public domain | W3C validator |