Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2739 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2739 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | eqid 2739 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20205 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
8 | 7 | simp1bi 1144 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 ∀wral 3065 ⊆ wss 3888 ∅c0 4257 ‘cfv 6437 (class class class)co 7284 Basecbs 16921 +gcplusg 16971 Scalarcsca 16974 ·𝑠 cvsca 16975 LSubSpclss 20202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fv 6445 df-ov 7287 df-lss 20203 |
This theorem is referenced by: lssel 20208 lssuni 20210 00lss 20212 lsssubg 20228 islss3 20230 lsslss 20232 lssintcl 20235 lssmre 20237 lssacs 20238 lspid 20253 lspssv 20254 lspssp 20259 lsslsp 20286 lmhmima 20318 reslmhm 20323 lsmsp 20357 pj1lmhm 20371 lsppratlem2 20419 lsppratlem3 20420 lsppratlem4 20421 lspprat 20424 lbsextlem3 20431 lidlss 20490 ocvin 20888 pjdm2 20927 pjff 20928 pjf2 20930 pjfo 20931 pjcss 20932 frlmgsum 20988 frlmsplit2 20989 lsslindf 21046 lsslinds 21047 cphsscph 24424 lssbn 24525 minveclem1 24597 minveclem2 24599 minveclem3a 24600 minveclem3b 24601 minveclem3 24602 minveclem4a 24603 minveclem4b 24604 minveclem4 24605 minveclem6 24607 minveclem7 24608 pjthlem1 24610 pjthlem2 24611 pjth 24612 lssdimle 31700 islshpsm 37001 lshpnelb 37005 lshpnel2N 37006 lshpcmp 37009 lsatssv 37019 lssats 37033 lpssat 37034 lssatle 37036 lssat 37037 islshpcv 37074 lkrssv 37117 lkrlsp 37123 dvhopellsm 39138 dvadiaN 39149 dihss 39272 dihrnss 39299 dochord2N 39392 dochord3 39393 dihoml4 39398 dochsat 39404 dochshpncl 39405 dochnoncon 39412 djhlsmcl 39435 dihjat1lem 39449 dochsatshp 39472 dochsatshpb 39473 dochshpsat 39475 dochexmidlem2 39482 dochexmidlem5 39485 dochexmidlem6 39486 dochexmidlem7 39487 dochexmidlem8 39488 lclkrlem2p 39543 lclkrlem2v 39549 lcfrlem5 39567 lcfr 39606 mapdpglem17N 39709 mapdpglem18 39710 mapdpglem21 39713 islssfg 40902 islssfg2 40903 lnmlsslnm 40913 kercvrlsm 40915 lnmepi 40917 filnm 40922 gsumlsscl 45730 lincellss 45778 ellcoellss 45787 |
Copyright terms: Public domain | W3C validator |