![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | β’ π = (Baseβπ) |
lssss.s | β’ π = (LSubSpβπ) |
Ref | Expression |
---|---|
lssss | β’ (π β π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
2 | eqid 2732 | . . 3 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
3 | lssss.v | . . 3 β’ π = (Baseβπ) | |
4 | eqid 2732 | . . 3 β’ (+gβπ) = (+gβπ) | |
5 | eqid 2732 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
6 | lssss.s | . . 3 β’ π = (LSubSpβπ) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20537 | . 2 β’ (π β π β (π β π β§ π β β β§ βπ₯ β (Baseβ(Scalarβπ))βπ β π βπ β π ((π₯( Β·π βπ)π)(+gβπ)π) β π)) |
8 | 7 | simp1bi 1145 | 1 β’ (π β π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 β wss 3947 β c0 4321 βcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 Scalarcsca 17196 Β·π cvsca 17197 LSubSpclss 20534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-lss 20535 |
This theorem is referenced by: lssel 20540 lssuni 20542 00lss 20544 lsssubg 20560 islss3 20562 lsslss 20564 lssintcl 20567 lssmre 20569 lssacs 20570 lspid 20585 lspssv 20586 lspssp 20591 lsslsp 20618 lmhmima 20650 reslmhm 20655 lsmsp 20689 pj1lmhm 20703 lsppratlem2 20753 lsppratlem3 20754 lsppratlem4 20755 lspprat 20758 lbsextlem3 20765 lidlss 20825 ocvin 21218 pjdm2 21257 pjff 21258 pjf2 21260 pjfo 21261 pjcss 21262 frlmgsum 21318 frlmsplit2 21319 lsslindf 21376 lsslinds 21377 cphsscph 24759 lssbn 24860 minveclem1 24932 minveclem2 24934 minveclem3a 24935 minveclem3b 24936 minveclem3 24937 minveclem4a 24938 minveclem4b 24939 minveclem4 24940 minveclem6 24942 minveclem7 24943 pjthlem1 24945 pjthlem2 24946 pjth 24947 lssdimle 32680 ply1degltdimlem 32695 ply1degltdim 32696 islshpsm 37838 lshpnelb 37842 lshpnel2N 37843 lshpcmp 37846 lsatssv 37856 lssats 37870 lpssat 37871 lssatle 37873 lssat 37874 islshpcv 37911 lkrssv 37954 lkrlsp 37960 dvhopellsm 39976 dvadiaN 39987 dihss 40110 dihrnss 40137 dochord2N 40230 dochord3 40231 dihoml4 40236 dochsat 40242 dochshpncl 40243 dochnoncon 40250 djhlsmcl 40273 dihjat1lem 40287 dochsatshp 40310 dochsatshpb 40311 dochshpsat 40313 dochexmidlem2 40320 dochexmidlem5 40323 dochexmidlem6 40324 dochexmidlem7 40325 dochexmidlem8 40326 lclkrlem2p 40381 lclkrlem2v 40387 lcfrlem5 40405 lcfr 40444 mapdpglem17N 40547 mapdpglem18 40548 mapdpglem21 40551 islssfg 41797 islssfg2 41798 lnmlsslnm 41808 kercvrlsm 41810 lnmepi 41812 filnm 41817 gsumlsscl 47012 lincellss 47060 ellcoellss 47069 |
Copyright terms: Public domain | W3C validator |