Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2738 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2738 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | eqid 2738 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20111 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
8 | 7 | simp1bi 1143 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 LSubSpclss 20108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-lss 20109 |
This theorem is referenced by: lssel 20114 lssuni 20116 00lss 20118 lsssubg 20134 islss3 20136 lsslss 20138 lssintcl 20141 lssmre 20143 lssacs 20144 lspid 20159 lspssv 20160 lspssp 20165 lsslsp 20192 lmhmima 20224 reslmhm 20229 lsmsp 20263 pj1lmhm 20277 lsppratlem2 20325 lsppratlem3 20326 lsppratlem4 20327 lspprat 20330 lbsextlem3 20337 lidlss 20394 ocvin 20791 pjdm2 20828 pjff 20829 pjf2 20831 pjfo 20832 pjcss 20833 frlmgsum 20889 frlmsplit2 20890 lsslindf 20947 lsslinds 20948 cphsscph 24320 lssbn 24421 minveclem1 24493 minveclem2 24495 minveclem3a 24496 minveclem3b 24497 minveclem3 24498 minveclem4a 24499 minveclem4b 24500 minveclem4 24501 minveclem6 24503 minveclem7 24504 pjthlem1 24506 pjthlem2 24507 pjth 24508 lssdimle 31593 islshpsm 36921 lshpnelb 36925 lshpnel2N 36926 lshpcmp 36929 lsatssv 36939 lssats 36953 lpssat 36954 lssatle 36956 lssat 36957 islshpcv 36994 lkrssv 37037 lkrlsp 37043 dvhopellsm 39058 dvadiaN 39069 dihss 39192 dihrnss 39219 dochord2N 39312 dochord3 39313 dihoml4 39318 dochsat 39324 dochshpncl 39325 dochnoncon 39332 djhlsmcl 39355 dihjat1lem 39369 dochsatshp 39392 dochsatshpb 39393 dochshpsat 39395 dochexmidlem2 39402 dochexmidlem5 39405 dochexmidlem6 39406 dochexmidlem7 39407 dochexmidlem8 39408 lclkrlem2p 39463 lclkrlem2v 39469 lcfrlem5 39487 lcfr 39526 mapdpglem17N 39629 mapdpglem18 39630 mapdpglem21 39633 islssfg 40811 islssfg2 40812 lnmlsslnm 40822 kercvrlsm 40824 lnmepi 40826 filnm 40831 gsumlsscl 45607 lincellss 45655 ellcoellss 45664 |
Copyright terms: Public domain | W3C validator |