![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2740 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2740 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | eqid 2740 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20955 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
8 | 7 | simp1bi 1145 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ⊆ wss 3976 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 LSubSpclss 20952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-lss 20953 |
This theorem is referenced by: lssel 20958 lssuni 20960 00lss 20962 lsssubg 20978 islss3 20980 lsslss 20982 lssintcl 20985 lssmre 20987 lssacs 20988 lspid 21003 lspssv 21004 lspssp 21009 lsslsp 21036 lsslspOLD 21037 lmhmima 21069 reslmhm 21074 lsmsp 21108 pj1lmhm 21122 lsppratlem2 21173 lsppratlem3 21174 lsppratlem4 21175 lspprat 21178 lbsextlem3 21185 lidlss 21245 ocvin 21715 pjdm2 21754 pjff 21755 pjf2 21757 pjfo 21758 pjcss 21759 frlmgsum 21815 frlmsplit2 21816 lsslindf 21873 lsslinds 21874 cphsscph 25304 lssbn 25405 minveclem1 25477 minveclem2 25479 minveclem3a 25480 minveclem3b 25481 minveclem3 25482 minveclem4a 25483 minveclem4b 25484 minveclem4 25485 minveclem6 25487 minveclem7 25488 pjthlem1 25490 pjthlem2 25491 pjth 25492 lssdimle 33620 ply1degltdimlem 33635 ply1degltdim 33636 dimlssid 33645 islshpsm 38936 lshpnelb 38940 lshpnel2N 38941 lshpcmp 38944 lsatssv 38954 lssats 38968 lpssat 38969 lssatle 38971 lssat 38972 islshpcv 39009 lkrssv 39052 lkrlsp 39058 dvhopellsm 41074 dvadiaN 41085 dihss 41208 dihrnss 41235 dochord2N 41328 dochord3 41329 dihoml4 41334 dochsat 41340 dochshpncl 41341 dochnoncon 41348 djhlsmcl 41371 dihjat1lem 41385 dochsatshp 41408 dochsatshpb 41409 dochshpsat 41411 dochexmidlem2 41418 dochexmidlem5 41421 dochexmidlem6 41422 dochexmidlem7 41423 dochexmidlem8 41424 lclkrlem2p 41479 lclkrlem2v 41485 lcfrlem5 41503 lcfr 41542 mapdpglem17N 41645 mapdpglem18 41646 mapdpglem21 41649 islssfg 43027 islssfg2 43028 lnmlsslnm 43038 kercvrlsm 43040 lnmepi 43042 filnm 43047 gsumlsscl 48108 lincellss 48155 ellcoellss 48164 |
Copyright terms: Public domain | W3C validator |