| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version | ||
| Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2729 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | islss 20840 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
| 8 | 7 | simp1bi 1145 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3914 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Scalarcsca 17223 ·𝑠 cvsca 17224 LSubSpclss 20837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-lss 20838 |
| This theorem is referenced by: lssel 20843 lssuni 20845 00lss 20847 lsssubg 20863 islss3 20865 lsslss 20867 lssintcl 20870 lssmre 20872 lssacs 20873 lspid 20888 lspssv 20889 lspssp 20894 lsslsp 20921 lsslspOLD 20922 lmhmima 20954 reslmhm 20959 lsmsp 20993 pj1lmhm 21007 lsppratlem2 21058 lsppratlem3 21059 lsppratlem4 21060 lspprat 21063 lbsextlem3 21070 lidlss 21122 ocvin 21583 pjdm2 21620 pjff 21621 pjf2 21623 pjfo 21624 pjcss 21625 frlmgsum 21681 frlmsplit2 21682 lsslindf 21739 lsslinds 21740 cphsscph 25151 lssbn 25252 minveclem1 25324 minveclem2 25326 minveclem3a 25327 minveclem3b 25328 minveclem3 25329 minveclem4a 25330 minveclem4b 25331 minveclem4 25332 minveclem6 25334 minveclem7 25335 pjthlem1 25337 pjthlem2 25338 pjth 25339 lssdimle 33603 ply1degltdimlem 33618 ply1degltdim 33619 dimlssid 33628 islshpsm 38973 lshpnelb 38977 lshpnel2N 38978 lshpcmp 38981 lsatssv 38991 lssats 39005 lpssat 39006 lssatle 39008 lssat 39009 islshpcv 39046 lkrssv 39089 lkrlsp 39095 dvhopellsm 41111 dvadiaN 41122 dihss 41245 dihrnss 41272 dochord2N 41365 dochord3 41366 dihoml4 41371 dochsat 41377 dochshpncl 41378 dochnoncon 41385 djhlsmcl 41408 dihjat1lem 41422 dochsatshp 41445 dochsatshpb 41446 dochshpsat 41448 dochexmidlem2 41455 dochexmidlem5 41458 dochexmidlem6 41459 dochexmidlem7 41460 dochexmidlem8 41461 lclkrlem2p 41516 lclkrlem2v 41522 lcfrlem5 41540 lcfr 41579 mapdpglem17N 41682 mapdpglem18 41683 mapdpglem21 41686 islssfg 43059 islssfg2 43060 lnmlsslnm 43070 kercvrlsm 43072 lnmepi 43074 filnm 43079 gsumlsscl 48368 lincellss 48415 ellcoellss 48424 |
| Copyright terms: Public domain | W3C validator |