| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version | ||
| Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2734 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2734 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | eqid 2734 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | islss 20905 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
| 8 | 7 | simp1bi 1145 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ⊆ wss 3933 ∅c0 4315 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 +gcplusg 17277 Scalarcsca 17280 ·𝑠 cvsca 17281 LSubSpclss 20902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-lss 20903 |
| This theorem is referenced by: lssel 20908 lssuni 20910 00lss 20912 lsssubg 20928 islss3 20930 lsslss 20932 lssintcl 20935 lssmre 20937 lssacs 20938 lspid 20953 lspssv 20954 lspssp 20959 lsslsp 20986 lsslspOLD 20987 lmhmima 21019 reslmhm 21024 lsmsp 21058 pj1lmhm 21072 lsppratlem2 21123 lsppratlem3 21124 lsppratlem4 21125 lspprat 21128 lbsextlem3 21135 lidlss 21189 ocvin 21659 pjdm2 21698 pjff 21699 pjf2 21701 pjfo 21702 pjcss 21703 frlmgsum 21759 frlmsplit2 21760 lsslindf 21817 lsslinds 21818 cphsscph 25240 lssbn 25341 minveclem1 25413 minveclem2 25415 minveclem3a 25416 minveclem3b 25417 minveclem3 25418 minveclem4a 25419 minveclem4b 25420 minveclem4 25421 minveclem6 25423 minveclem7 25424 pjthlem1 25426 pjthlem2 25427 pjth 25428 lssdimle 33599 ply1degltdimlem 33614 ply1degltdim 33615 dimlssid 33624 islshpsm 38922 lshpnelb 38926 lshpnel2N 38927 lshpcmp 38930 lsatssv 38940 lssats 38954 lpssat 38955 lssatle 38957 lssat 38958 islshpcv 38995 lkrssv 39038 lkrlsp 39044 dvhopellsm 41060 dvadiaN 41071 dihss 41194 dihrnss 41221 dochord2N 41314 dochord3 41315 dihoml4 41320 dochsat 41326 dochshpncl 41327 dochnoncon 41334 djhlsmcl 41357 dihjat1lem 41371 dochsatshp 41394 dochsatshpb 41395 dochshpsat 41397 dochexmidlem2 41404 dochexmidlem5 41407 dochexmidlem6 41408 dochexmidlem7 41409 dochexmidlem8 41410 lclkrlem2p 41465 lclkrlem2v 41471 lcfrlem5 41489 lcfr 41528 mapdpglem17N 41631 mapdpglem18 41632 mapdpglem21 41635 islssfg 43027 islssfg2 43028 lnmlsslnm 43038 kercvrlsm 43040 lnmepi 43042 filnm 43047 gsumlsscl 48242 lincellss 48289 ellcoellss 48298 |
| Copyright terms: Public domain | W3C validator |