| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version | ||
| Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2731 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | eqid 2731 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | islss 20868 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
| 8 | 7 | simp1bi 1145 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3902 ∅c0 4283 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 LSubSpclss 20865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-lss 20866 |
| This theorem is referenced by: lssel 20871 lssuni 20873 00lss 20875 lsssubg 20891 islss3 20893 lsslss 20895 lssintcl 20898 lssmre 20900 lssacs 20901 lspid 20916 lspssv 20917 lspssp 20922 lsslsp 20949 lsslspOLD 20950 lmhmima 20982 reslmhm 20987 lsmsp 21021 pj1lmhm 21035 lsppratlem2 21086 lsppratlem3 21087 lsppratlem4 21088 lspprat 21091 lbsextlem3 21098 lidlss 21150 ocvin 21612 pjdm2 21649 pjff 21650 pjf2 21652 pjfo 21653 pjcss 21654 frlmgsum 21710 frlmsplit2 21711 lsslindf 21768 lsslinds 21769 cphsscph 25179 lssbn 25280 minveclem1 25352 minveclem2 25354 minveclem3a 25355 minveclem3b 25356 minveclem3 25357 minveclem4a 25358 minveclem4b 25359 minveclem4 25360 minveclem6 25362 minveclem7 25363 pjthlem1 25365 pjthlem2 25366 pjth 25367 lssdimle 33618 ply1degltdimlem 33633 ply1degltdim 33634 dimlssid 33643 islshpsm 39025 lshpnelb 39029 lshpnel2N 39030 lshpcmp 39033 lsatssv 39043 lssats 39057 lpssat 39058 lssatle 39060 lssat 39061 islshpcv 39098 lkrssv 39141 lkrlsp 39147 dvhopellsm 41162 dvadiaN 41173 dihss 41296 dihrnss 41323 dochord2N 41416 dochord3 41417 dihoml4 41422 dochsat 41428 dochshpncl 41429 dochnoncon 41436 djhlsmcl 41459 dihjat1lem 41473 dochsatshp 41496 dochsatshpb 41497 dochshpsat 41499 dochexmidlem2 41506 dochexmidlem5 41509 dochexmidlem6 41510 dochexmidlem7 41511 dochexmidlem8 41512 lclkrlem2p 41567 lclkrlem2v 41573 lcfrlem5 41591 lcfr 41630 mapdpglem17N 41733 mapdpglem18 41734 mapdpglem21 41737 islssfg 43109 islssfg2 43110 lnmlsslnm 43120 kercvrlsm 43122 lnmepi 43124 filnm 43129 gsumlsscl 48417 lincellss 48464 ellcoellss 48473 |
| Copyright terms: Public domain | W3C validator |