![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2735 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2735 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | eqid 2735 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20950 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
8 | 7 | simp1bi 1144 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ⊆ wss 3963 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Scalarcsca 17301 ·𝑠 cvsca 17302 LSubSpclss 20947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-lss 20948 |
This theorem is referenced by: lssel 20953 lssuni 20955 00lss 20957 lsssubg 20973 islss3 20975 lsslss 20977 lssintcl 20980 lssmre 20982 lssacs 20983 lspid 20998 lspssv 20999 lspssp 21004 lsslsp 21031 lsslspOLD 21032 lmhmima 21064 reslmhm 21069 lsmsp 21103 pj1lmhm 21117 lsppratlem2 21168 lsppratlem3 21169 lsppratlem4 21170 lspprat 21173 lbsextlem3 21180 lidlss 21240 ocvin 21710 pjdm2 21749 pjff 21750 pjf2 21752 pjfo 21753 pjcss 21754 frlmgsum 21810 frlmsplit2 21811 lsslindf 21868 lsslinds 21869 cphsscph 25299 lssbn 25400 minveclem1 25472 minveclem2 25474 minveclem3a 25475 minveclem3b 25476 minveclem3 25477 minveclem4a 25478 minveclem4b 25479 minveclem4 25480 minveclem6 25482 minveclem7 25483 pjthlem1 25485 pjthlem2 25486 pjth 25487 lssdimle 33635 ply1degltdimlem 33650 ply1degltdim 33651 dimlssid 33660 islshpsm 38962 lshpnelb 38966 lshpnel2N 38967 lshpcmp 38970 lsatssv 38980 lssats 38994 lpssat 38995 lssatle 38997 lssat 38998 islshpcv 39035 lkrssv 39078 lkrlsp 39084 dvhopellsm 41100 dvadiaN 41111 dihss 41234 dihrnss 41261 dochord2N 41354 dochord3 41355 dihoml4 41360 dochsat 41366 dochshpncl 41367 dochnoncon 41374 djhlsmcl 41397 dihjat1lem 41411 dochsatshp 41434 dochsatshpb 41435 dochshpsat 41437 dochexmidlem2 41444 dochexmidlem5 41447 dochexmidlem6 41448 dochexmidlem7 41449 dochexmidlem8 41450 lclkrlem2p 41505 lclkrlem2v 41511 lcfrlem5 41529 lcfr 41568 mapdpglem17N 41671 mapdpglem18 41672 mapdpglem21 41675 islssfg 43059 islssfg2 43060 lnmlsslnm 43070 kercvrlsm 43072 lnmepi 43074 filnm 43079 gsumlsscl 48225 lincellss 48272 ellcoellss 48281 |
Copyright terms: Public domain | W3C validator |