Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2758 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2758 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | eqid 2758 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islss 19774 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
8 | 7 | simp1bi 1142 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ⊆ wss 3858 ∅c0 4225 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 +gcplusg 16623 Scalarcsca 16626 ·𝑠 cvsca 16627 LSubSpclss 19771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-ov 7153 df-lss 19772 |
This theorem is referenced by: lssel 19777 lssuni 19779 00lss 19781 lsssubg 19797 islss3 19799 lsslss 19801 lssintcl 19804 lssmre 19806 lssacs 19807 lspid 19822 lspssv 19823 lspssp 19828 lsslsp 19855 lmhmima 19887 reslmhm 19892 lsmsp 19926 pj1lmhm 19940 lsppratlem2 19988 lsppratlem3 19989 lsppratlem4 19990 lspprat 19993 lbsextlem3 20000 lidlss 20051 ocvin 20439 pjdm2 20476 pjff 20477 pjf2 20479 pjfo 20480 pjcss 20481 frlmgsum 20537 frlmsplit2 20538 lsslindf 20595 lsslinds 20596 cphsscph 23951 lssbn 24052 minveclem1 24124 minveclem2 24126 minveclem3a 24127 minveclem3b 24128 minveclem3 24129 minveclem4a 24130 minveclem4b 24131 minveclem4 24132 minveclem6 24134 minveclem7 24135 pjthlem1 24137 pjthlem2 24138 pjth 24139 lssdimle 31212 islshpsm 36556 lshpnelb 36560 lshpnel2N 36561 lshpcmp 36564 lsatssv 36574 lssats 36588 lpssat 36589 lssatle 36591 lssat 36592 islshpcv 36629 lkrssv 36672 lkrlsp 36678 dvhopellsm 38693 dvadiaN 38704 dihss 38827 dihrnss 38854 dochord2N 38947 dochord3 38948 dihoml4 38953 dochsat 38959 dochshpncl 38960 dochnoncon 38967 djhlsmcl 38990 dihjat1lem 39004 dochsatshp 39027 dochsatshpb 39028 dochshpsat 39030 dochexmidlem2 39037 dochexmidlem5 39040 dochexmidlem6 39041 dochexmidlem7 39042 dochexmidlem8 39043 lclkrlem2p 39098 lclkrlem2v 39104 lcfrlem5 39122 lcfr 39161 mapdpglem17N 39264 mapdpglem18 39265 mapdpglem21 39268 islssfg 40387 islssfg2 40388 lnmlsslnm 40398 kercvrlsm 40400 lnmepi 40402 filnm 40407 gsumlsscl 45152 lincellss 45200 ellcoellss 45209 |
Copyright terms: Public domain | W3C validator |