![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2825 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2825 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | eqid 2825 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islss 19298 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
8 | 7 | simp1bi 1179 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ∀wral 3117 ⊆ wss 3798 ∅c0 4146 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 +gcplusg 16312 Scalarcsca 16315 ·𝑠 cvsca 16316 LSubSpclss 19295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 df-ov 6913 df-lss 19296 |
This theorem is referenced by: lssel 19301 lssuni 19303 00lss 19305 lsssubg 19323 islss3 19325 lsslss 19327 lssintcl 19330 lssmre 19332 lssacs 19333 lspid 19348 lspssv 19349 lspssp 19354 lsslsp 19381 lmhmima 19413 reslmhm 19418 lsmsp 19452 pj1lmhm 19466 lsppratlem2 19516 lsppratlem3 19517 lsppratlem4 19518 lspprat 19521 lbsextlem3 19528 lidlss 19578 ocvin 20388 pjdm2 20425 pjff 20426 pjf2 20428 pjfo 20429 pjcss 20430 frlmgsum 20485 frlmsplit2 20486 lsslindf 20543 lsslinds 20544 cphsscph 23426 lssbn 23527 minveclem1 23599 minveclem2 23601 minveclem3a 23602 minveclem3b 23603 minveclem3 23604 minveclem4a 23605 minveclem4b 23606 minveclem4 23607 minveclem6 23609 minveclem7 23610 pjthlem1 23612 pjthlem2 23613 pjth 23614 islshpsm 35054 lshpnelb 35058 lshpnel2N 35059 lshpcmp 35062 lsatssv 35072 lssats 35086 lpssat 35087 lssatle 35089 lssat 35090 islshpcv 35127 lkrssv 35170 lkrlsp 35176 dvhopellsm 37191 dvadiaN 37202 dihss 37325 dihrnss 37352 dochord2N 37445 dochord3 37446 dihoml4 37451 dochsat 37457 dochshpncl 37458 dochnoncon 37465 djhlsmcl 37488 dihjat1lem 37502 dochsatshp 37525 dochsatshpb 37526 dochshpsat 37528 dochexmidlem2 37535 dochexmidlem5 37538 dochexmidlem6 37539 dochexmidlem7 37540 dochexmidlem8 37541 lclkrlem2p 37596 lclkrlem2v 37602 lcfrlem5 37620 lcfr 37659 mapdpglem17N 37762 mapdpglem18 37763 mapdpglem21 37766 islssfg 38482 islssfg2 38483 lnmlsslnm 38493 kercvrlsm 38495 lnmepi 38497 filnm 38502 gsumlsscl 43029 lincellss 43080 ellcoellss 43089 |
Copyright terms: Public domain | W3C validator |