| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version | ||
| Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2733 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2733 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | islss 20871 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
| 8 | 7 | simp1bi 1145 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ⊆ wss 3898 ∅c0 4282 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 Scalarcsca 17168 ·𝑠 cvsca 17169 LSubSpclss 20868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-lss 20869 |
| This theorem is referenced by: lssel 20874 lssuni 20876 00lss 20878 lsssubg 20894 islss3 20896 lsslss 20898 lssintcl 20901 lssmre 20903 lssacs 20904 lspid 20919 lspssv 20920 lspssp 20925 lsslsp 20952 lsslspOLD 20953 lmhmima 20985 reslmhm 20990 lsmsp 21024 pj1lmhm 21038 lsppratlem2 21089 lsppratlem3 21090 lsppratlem4 21091 lspprat 21094 lbsextlem3 21101 lidlss 21153 ocvin 21615 pjdm2 21652 pjff 21653 pjf2 21655 pjfo 21656 pjcss 21657 frlmgsum 21713 frlmsplit2 21714 lsslindf 21771 lsslinds 21772 cphsscph 25181 lssbn 25282 minveclem1 25354 minveclem2 25356 minveclem3a 25357 minveclem3b 25358 minveclem3 25359 minveclem4a 25360 minveclem4b 25361 minveclem4 25362 minveclem6 25364 minveclem7 25365 pjthlem1 25367 pjthlem2 25368 pjth 25369 lssdimle 33643 ply1degltdimlem 33658 ply1degltdim 33659 dimlssid 33668 islshpsm 39102 lshpnelb 39106 lshpnel2N 39107 lshpcmp 39110 lsatssv 39120 lssats 39134 lpssat 39135 lssatle 39137 lssat 39138 islshpcv 39175 lkrssv 39218 lkrlsp 39224 dvhopellsm 41239 dvadiaN 41250 dihss 41373 dihrnss 41400 dochord2N 41493 dochord3 41494 dihoml4 41499 dochsat 41505 dochshpncl 41506 dochnoncon 41513 djhlsmcl 41536 dihjat1lem 41550 dochsatshp 41573 dochsatshpb 41574 dochshpsat 41576 dochexmidlem2 41583 dochexmidlem5 41586 dochexmidlem6 41587 dochexmidlem7 41588 dochexmidlem8 41589 lclkrlem2p 41644 lclkrlem2v 41650 lcfrlem5 41668 lcfr 41707 mapdpglem17N 41810 mapdpglem18 41811 mapdpglem21 41814 islssfg 43190 islssfg2 43191 lnmlsslnm 43201 kercvrlsm 43203 lnmepi 43205 filnm 43210 gsumlsscl 48507 lincellss 48554 ellcoellss 48563 |
| Copyright terms: Public domain | W3C validator |