![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | β’ π = (Baseβπ) |
lssss.s | β’ π = (LSubSpβπ) |
Ref | Expression |
---|---|
lssss | β’ (π β π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
2 | eqid 2733 | . . 3 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
3 | lssss.v | . . 3 β’ π = (Baseβπ) | |
4 | eqid 2733 | . . 3 β’ (+gβπ) = (+gβπ) | |
5 | eqid 2733 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
6 | lssss.s | . . 3 β’ π = (LSubSpβπ) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20545 | . 2 β’ (π β π β (π β π β§ π β β β§ βπ₯ β (Baseβ(Scalarβπ))βπ β π βπ β π ((π₯( Β·π βπ)π)(+gβπ)π) β π)) |
8 | 7 | simp1bi 1146 | 1 β’ (π β π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 β wne 2941 βwral 3062 β wss 3949 β c0 4323 βcfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 Scalarcsca 17200 Β·π cvsca 17201 LSubSpclss 20542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-lss 20543 |
This theorem is referenced by: lssel 20548 lssuni 20550 00lss 20552 lsssubg 20568 islss3 20570 lsslss 20572 lssintcl 20575 lssmre 20577 lssacs 20578 lspid 20593 lspssv 20594 lspssp 20599 lsslsp 20626 lmhmima 20658 reslmhm 20663 lsmsp 20697 pj1lmhm 20711 lsppratlem2 20761 lsppratlem3 20762 lsppratlem4 20763 lspprat 20766 lbsextlem3 20773 lidlss 20833 ocvin 21227 pjdm2 21266 pjff 21267 pjf2 21269 pjfo 21270 pjcss 21271 frlmgsum 21327 frlmsplit2 21328 lsslindf 21385 lsslinds 21386 cphsscph 24768 lssbn 24869 minveclem1 24941 minveclem2 24943 minveclem3a 24944 minveclem3b 24945 minveclem3 24946 minveclem4a 24947 minveclem4b 24948 minveclem4 24949 minveclem6 24951 minveclem7 24952 pjthlem1 24954 pjthlem2 24955 pjth 24956 lssdimle 32692 ply1degltdimlem 32707 ply1degltdim 32708 islshpsm 37850 lshpnelb 37854 lshpnel2N 37855 lshpcmp 37858 lsatssv 37868 lssats 37882 lpssat 37883 lssatle 37885 lssat 37886 islshpcv 37923 lkrssv 37966 lkrlsp 37972 dvhopellsm 39988 dvadiaN 39999 dihss 40122 dihrnss 40149 dochord2N 40242 dochord3 40243 dihoml4 40248 dochsat 40254 dochshpncl 40255 dochnoncon 40262 djhlsmcl 40285 dihjat1lem 40299 dochsatshp 40322 dochsatshpb 40323 dochshpsat 40325 dochexmidlem2 40332 dochexmidlem5 40335 dochexmidlem6 40336 dochexmidlem7 40337 dochexmidlem8 40338 lclkrlem2p 40393 lclkrlem2v 40399 lcfrlem5 40417 lcfr 40456 mapdpglem17N 40559 mapdpglem18 40560 mapdpglem21 40563 islssfg 41812 islssfg2 41813 lnmlsslnm 41823 kercvrlsm 41825 lnmepi 41827 filnm 41832 gsumlsscl 47059 lincellss 47107 ellcoellss 47116 |
Copyright terms: Public domain | W3C validator |