| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version | ||
| Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2729 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | islss 20855 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
| 8 | 7 | simp1bi 1145 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3905 ∅c0 4286 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Scalarcsca 17182 ·𝑠 cvsca 17183 LSubSpclss 20852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-lss 20853 |
| This theorem is referenced by: lssel 20858 lssuni 20860 00lss 20862 lsssubg 20878 islss3 20880 lsslss 20882 lssintcl 20885 lssmre 20887 lssacs 20888 lspid 20903 lspssv 20904 lspssp 20909 lsslsp 20936 lsslspOLD 20937 lmhmima 20969 reslmhm 20974 lsmsp 21008 pj1lmhm 21022 lsppratlem2 21073 lsppratlem3 21074 lsppratlem4 21075 lspprat 21078 lbsextlem3 21085 lidlss 21137 ocvin 21599 pjdm2 21636 pjff 21637 pjf2 21639 pjfo 21640 pjcss 21641 frlmgsum 21697 frlmsplit2 21698 lsslindf 21755 lsslinds 21756 cphsscph 25167 lssbn 25268 minveclem1 25340 minveclem2 25342 minveclem3a 25343 minveclem3b 25344 minveclem3 25345 minveclem4a 25346 minveclem4b 25347 minveclem4 25348 minveclem6 25350 minveclem7 25351 pjthlem1 25353 pjthlem2 25354 pjth 25355 lssdimle 33582 ply1degltdimlem 33597 ply1degltdim 33598 dimlssid 33607 islshpsm 38961 lshpnelb 38965 lshpnel2N 38966 lshpcmp 38969 lsatssv 38979 lssats 38993 lpssat 38994 lssatle 38996 lssat 38997 islshpcv 39034 lkrssv 39077 lkrlsp 39083 dvhopellsm 41099 dvadiaN 41110 dihss 41233 dihrnss 41260 dochord2N 41353 dochord3 41354 dihoml4 41359 dochsat 41365 dochshpncl 41366 dochnoncon 41373 djhlsmcl 41396 dihjat1lem 41410 dochsatshp 41433 dochsatshpb 41434 dochshpsat 41436 dochexmidlem2 41443 dochexmidlem5 41446 dochexmidlem6 41447 dochexmidlem7 41448 dochexmidlem8 41449 lclkrlem2p 41504 lclkrlem2v 41510 lcfrlem5 41528 lcfr 41567 mapdpglem17N 41670 mapdpglem18 41671 mapdpglem21 41674 islssfg 43046 islssfg2 43047 lnmlsslnm 43057 kercvrlsm 43059 lnmepi 43061 filnm 43066 gsumlsscl 48368 lincellss 48415 ellcoellss 48424 |
| Copyright terms: Public domain | W3C validator |