![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lss1 | Structured version Visualization version GIF version |
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lssss.v | β’ π = (Baseβπ) |
lssss.s | β’ π = (LSubSpβπ) |
Ref | Expression |
---|---|
lss1 | β’ (π β LMod β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2733 | . 2 β’ (π β LMod β (Scalarβπ) = (Scalarβπ)) | |
2 | eqidd 2733 | . 2 β’ (π β LMod β (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ))) | |
3 | lssss.v | . . 3 β’ π = (Baseβπ) | |
4 | 3 | a1i 11 | . 2 β’ (π β LMod β π = (Baseβπ)) |
5 | eqidd 2733 | . 2 β’ (π β LMod β (+gβπ) = (+gβπ)) | |
6 | eqidd 2733 | . 2 β’ (π β LMod β ( Β·π βπ) = ( Β·π βπ)) | |
7 | lssss.s | . . 3 β’ π = (LSubSpβπ) | |
8 | 7 | a1i 11 | . 2 β’ (π β LMod β π = (LSubSpβπ)) |
9 | ssidd 4004 | . 2 β’ (π β LMod β π β π) | |
10 | 3 | lmodbn0 20474 | . 2 β’ (π β LMod β π β β ) |
11 | simpl 483 | . . 3 β’ ((π β LMod β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β LMod) | |
12 | eqid 2732 | . . . . 5 β’ (Scalarβπ) = (Scalarβπ) | |
13 | eqid 2732 | . . . . 5 β’ ( Β·π βπ) = ( Β·π βπ) | |
14 | eqid 2732 | . . . . 5 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
15 | 3, 12, 13, 14 | lmodvscl 20481 | . . . 4 β’ ((π β LMod β§ π₯ β (Baseβ(Scalarβπ)) β§ π β π) β (π₯( Β·π βπ)π) β π) |
16 | 15 | 3adant3r3 1184 | . . 3 β’ ((π β LMod β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (π₯( Β·π βπ)π) β π) |
17 | simpr3 1196 | . . 3 β’ ((π β LMod β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β π) | |
18 | eqid 2732 | . . . 4 β’ (+gβπ) = (+gβπ) | |
19 | 3, 18 | lmodvacl 20478 | . . 3 β’ ((π β LMod β§ (π₯( Β·π βπ)π) β π β§ π β π) β ((π₯( Β·π βπ)π)(+gβπ)π) β π) |
20 | 11, 16, 17, 19 | syl3anc 1371 | . 2 β’ ((π β LMod β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β ((π₯( Β·π βπ)π)(+gβπ)π) β π) |
21 | 1, 2, 4, 5, 6, 8, 9, 10, 20 | islssd 20538 | 1 β’ (π β LMod β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 Scalarcsca 17196 Β·π cvsca 17197 LModclmod 20463 LSubSpclss 20534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-riota 7361 df-ov 7408 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-lmod 20465 df-lss 20535 |
This theorem is referenced by: lssuni 20542 islss3 20562 lssmre 20569 lspf 20577 lspval 20578 lmhmrnlss 20653 lidl1 20837 isphld 21198 ocv1 21223 aspval 21418 islshpcv 37911 dochexmidlem8 40326 hdmaprnlem4N 40712 lnmfg 41809 |
Copyright terms: Public domain | W3C validator |