Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lss1 | Structured version Visualization version GIF version |
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lss1 | ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2740 | . 2 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
2 | eqidd 2740 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 = (Base‘𝑊)) |
5 | eqidd 2740 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
6 | eqidd 2740 | . 2 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊)) | |
7 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | 7 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
9 | ssidd 3945 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 ⊆ 𝑉) | |
10 | 3 | lmodbn0 20142 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 ≠ ∅) |
11 | simpl 483 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
12 | eqid 2739 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
13 | eqid 2739 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
14 | eqid 2739 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
15 | 3, 12, 13, 14 | lmodvscl 20149 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
16 | 15 | 3adant3r3 1183 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
17 | simpr3 1195 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
18 | eqid 2739 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
19 | 3, 18 | lmodvacl 20146 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
20 | 11, 16, 17, 19 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
21 | 1, 2, 4, 5, 6, 8, 9, 10, 20 | islssd 20206 | 1 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6437 (class class class)co 7284 Basecbs 16921 +gcplusg 16971 Scalarcsca 16974 ·𝑠 cvsca 16975 LModclmod 20132 LSubSpclss 20202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fv 6445 df-riota 7241 df-ov 7287 df-0g 17161 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-grp 18589 df-lmod 20134 df-lss 20203 |
This theorem is referenced by: lssuni 20210 islss3 20230 lssmre 20237 lspf 20245 lspval 20246 lmhmrnlss 20321 lidl1 20500 isphld 20868 ocv1 20893 aspval 21086 islshpcv 37074 dochexmidlem8 39488 hdmaprnlem4N 39874 lnmfg 40914 |
Copyright terms: Public domain | W3C validator |