MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1 Structured version   Visualization version   GIF version

Theorem lss1 20541
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v 𝑉 = (Baseβ€˜π‘Š)
lssss.s 𝑆 = (LSubSpβ€˜π‘Š)
Assertion
Ref Expression
lss1 (π‘Š ∈ LMod β†’ 𝑉 ∈ 𝑆)

Proof of Theorem lss1
Dummy variables π‘Ž 𝑏 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2733 . 2 (π‘Š ∈ LMod β†’ (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š))
2 eqidd 2733 . 2 (π‘Š ∈ LMod β†’ (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š)))
3 lssss.v . . 3 𝑉 = (Baseβ€˜π‘Š)
43a1i 11 . 2 (π‘Š ∈ LMod β†’ 𝑉 = (Baseβ€˜π‘Š))
5 eqidd 2733 . 2 (π‘Š ∈ LMod β†’ (+gβ€˜π‘Š) = (+gβ€˜π‘Š))
6 eqidd 2733 . 2 (π‘Š ∈ LMod β†’ ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š))
7 lssss.s . . 3 𝑆 = (LSubSpβ€˜π‘Š)
87a1i 11 . 2 (π‘Š ∈ LMod β†’ 𝑆 = (LSubSpβ€˜π‘Š))
9 ssidd 4004 . 2 (π‘Š ∈ LMod β†’ 𝑉 βŠ† 𝑉)
103lmodbn0 20474 . 2 (π‘Š ∈ LMod β†’ 𝑉 β‰  βˆ…)
11 simpl 483 . . 3 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ π‘Š ∈ LMod)
12 eqid 2732 . . . . 5 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
13 eqid 2732 . . . . 5 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
14 eqid 2732 . . . . 5 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
153, 12, 13, 14lmodvscl 20481 . . . 4 ((π‘Š ∈ LMod ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ 𝑉) β†’ (π‘₯( ·𝑠 β€˜π‘Š)π‘Ž) ∈ 𝑉)
16153adant3r3 1184 . . 3 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ (π‘₯( ·𝑠 β€˜π‘Š)π‘Ž) ∈ 𝑉)
17 simpr3 1196 . . 3 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ 𝑏 ∈ 𝑉)
18 eqid 2732 . . . 4 (+gβ€˜π‘Š) = (+gβ€˜π‘Š)
193, 18lmodvacl 20478 . . 3 ((π‘Š ∈ LMod ∧ (π‘₯( ·𝑠 β€˜π‘Š)π‘Ž) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) β†’ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ 𝑉)
2011, 16, 17, 19syl3anc 1371 . 2 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ 𝑉)
211, 2, 4, 5, 6, 8, 9, 10, 20islssd 20538 1 (π‘Š ∈ LMod β†’ 𝑉 ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Scalarcsca 17196   ·𝑠 cvsca 17197  LModclmod 20463  LSubSpclss 20534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-riota 7361  df-ov 7408  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-lmod 20465  df-lss 20535
This theorem is referenced by:  lssuni  20542  islss3  20562  lssmre  20569  lspf  20577  lspval  20578  lmhmrnlss  20653  lidl1  20837  isphld  21198  ocv1  21223  aspval  21418  islshpcv  37911  dochexmidlem8  40326  hdmaprnlem4N  40712  lnmfg  41809
  Copyright terms: Public domain W3C validator