MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1 Structured version   Visualization version   GIF version

Theorem lss1 20697
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v 𝑉 = (Base‘𝑊)
lssss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss1 (𝑊 ∈ LMod → 𝑉𝑆)

Proof of Theorem lss1
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . 2 (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2732 . 2 (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 lssss.v . . 3 𝑉 = (Base‘𝑊)
43a1i 11 . 2 (𝑊 ∈ LMod → 𝑉 = (Base‘𝑊))
5 eqidd 2732 . 2 (𝑊 ∈ LMod → (+g𝑊) = (+g𝑊))
6 eqidd 2732 . 2 (𝑊 ∈ LMod → ( ·𝑠𝑊) = ( ·𝑠𝑊))
7 lssss.s . . 3 𝑆 = (LSubSp‘𝑊)
87a1i 11 . 2 (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊))
9 ssidd 4005 . 2 (𝑊 ∈ LMod → 𝑉𝑉)
103lmodbn0 20629 . 2 (𝑊 ∈ LMod → 𝑉 ≠ ∅)
11 simpl 482 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑊 ∈ LMod)
12 eqid 2731 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
13 eqid 2731 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
14 eqid 2731 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
153, 12, 13, 14lmodvscl 20636 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉)
16153adant3r3 1183 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉)
17 simpr3 1195 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
18 eqid 2731 . . . 4 (+g𝑊) = (+g𝑊)
193, 18lmodvacl 20633 . . 3 ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉𝑏𝑉) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑉)
2011, 16, 17, 19syl3anc 1370 . 2 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑉)
211, 2, 4, 5, 6, 8, 9, 10, 20islssd 20694 1 (𝑊 ∈ LMod → 𝑉𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  cfv 6543  (class class class)co 7412  Basecbs 17151  +gcplusg 17204  Scalarcsca 17207   ·𝑠 cvsca 17208  LModclmod 20618  LSubSpclss 20690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-riota 7368  df-ov 7415  df-0g 17394  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-grp 18861  df-lmod 20620  df-lss 20691
This theorem is referenced by:  lssuni  20698  islss3  20718  lssmre  20725  lspf  20733  lspval  20734  lmhmrnlss  20809  lidl1  20998  isphld  21430  ocv1  21455  aspval  21650  islshpcv  38239  dochexmidlem8  40654  hdmaprnlem4N  41040  lnmfg  42139
  Copyright terms: Public domain W3C validator