Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lss1 | Structured version Visualization version GIF version |
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lss1 | ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2741 | . 2 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
2 | eqidd 2741 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 = (Base‘𝑊)) |
5 | eqidd 2741 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
6 | eqidd 2741 | . 2 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊)) | |
7 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | 7 | a1i 11 | . 2 ⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
9 | ssidd 3949 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 ⊆ 𝑉) | |
10 | 3 | lmodbn0 20123 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 ≠ ∅) |
11 | simpl 483 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
12 | eqid 2740 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
13 | eqid 2740 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
14 | eqid 2740 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
15 | 3, 12, 13, 14 | lmodvscl 20130 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
16 | 15 | 3adant3r3 1183 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
17 | simpr3 1195 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
18 | eqid 2740 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
19 | 3, 18 | lmodvacl 20127 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
20 | 11, 16, 17, 19 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
21 | 1, 2, 4, 5, 6, 8, 9, 10, 20 | islssd 20187 | 1 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ‘cfv 6431 (class class class)co 7269 Basecbs 16902 +gcplusg 16952 Scalarcsca 16955 ·𝑠 cvsca 16956 LModclmod 20113 LSubSpclss 20183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6389 df-fun 6433 df-fv 6439 df-riota 7226 df-ov 7272 df-0g 17142 df-mgm 18316 df-sgrp 18365 df-mnd 18376 df-grp 18570 df-lmod 20115 df-lss 20184 |
This theorem is referenced by: lssuni 20191 islss3 20211 lssmre 20218 lspf 20226 lspval 20227 lmhmrnlss 20302 lidl1 20481 isphld 20849 ocv1 20874 aspval 21067 islshpcv 37055 dochexmidlem8 39469 hdmaprnlem4N 39855 lnmfg 40896 |
Copyright terms: Public domain | W3C validator |