MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1 Structured version   Visualization version   GIF version

Theorem lss1 20190
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v 𝑉 = (Base‘𝑊)
lssss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss1 (𝑊 ∈ LMod → 𝑉𝑆)

Proof of Theorem lss1
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2741 . 2 (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2741 . 2 (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 lssss.v . . 3 𝑉 = (Base‘𝑊)
43a1i 11 . 2 (𝑊 ∈ LMod → 𝑉 = (Base‘𝑊))
5 eqidd 2741 . 2 (𝑊 ∈ LMod → (+g𝑊) = (+g𝑊))
6 eqidd 2741 . 2 (𝑊 ∈ LMod → ( ·𝑠𝑊) = ( ·𝑠𝑊))
7 lssss.s . . 3 𝑆 = (LSubSp‘𝑊)
87a1i 11 . 2 (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊))
9 ssidd 3949 . 2 (𝑊 ∈ LMod → 𝑉𝑉)
103lmodbn0 20123 . 2 (𝑊 ∈ LMod → 𝑉 ≠ ∅)
11 simpl 483 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑊 ∈ LMod)
12 eqid 2740 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
13 eqid 2740 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
14 eqid 2740 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
153, 12, 13, 14lmodvscl 20130 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉)
16153adant3r3 1183 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉)
17 simpr3 1195 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
18 eqid 2740 . . . 4 (+g𝑊) = (+g𝑊)
193, 18lmodvacl 20127 . . 3 ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉𝑏𝑉) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑉)
2011, 16, 17, 19syl3anc 1370 . 2 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑉)
211, 2, 4, 5, 6, 8, 9, 10, 20islssd 20187 1 (𝑊 ∈ LMod → 𝑉𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  cfv 6431  (class class class)co 7269  Basecbs 16902  +gcplusg 16952  Scalarcsca 16955   ·𝑠 cvsca 16956  LModclmod 20113  LSubSpclss 20183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6389  df-fun 6433  df-fv 6439  df-riota 7226  df-ov 7272  df-0g 17142  df-mgm 18316  df-sgrp 18365  df-mnd 18376  df-grp 18570  df-lmod 20115  df-lss 20184
This theorem is referenced by:  lssuni  20191  islss3  20211  lssmre  20218  lspf  20226  lspval  20227  lmhmrnlss  20302  lidl1  20481  isphld  20849  ocv1  20874  aspval  21067  islshpcv  37055  dochexmidlem8  39469  hdmaprnlem4N  39855  lnmfg  40896
  Copyright terms: Public domain W3C validator