Step | Hyp | Ref
| Expression |
1 | | simpl2 1192 |
. . 3
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β π β π) |
2 | | simpl3 1193 |
. . 3
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β π β π΄) |
3 | | simpr 485 |
. . 3
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β Β¬ π β€ π) |
4 | | eqidd 2733 |
. . 3
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β (π β¨ π) = (π β¨ π)) |
5 | | breq2 5151 |
. . . . . 6
β’ (π¦ = π β (π β€ π¦ β π β€ π)) |
6 | 5 | notbid 317 |
. . . . 5
β’ (π¦ = π β (Β¬ π β€ π¦ β Β¬ π β€ π)) |
7 | | oveq1 7412 |
. . . . . 6
β’ (π¦ = π β (π¦ β¨ π) = (π β¨ π)) |
8 | 7 | eqeq2d 2743 |
. . . . 5
β’ (π¦ = π β ((π β¨ π) = (π¦ β¨ π) β (π β¨ π) = (π β¨ π))) |
9 | 6, 8 | anbi12d 631 |
. . . 4
β’ (π¦ = π β ((Β¬ π β€ π¦ β§ (π β¨ π) = (π¦ β¨ π)) β (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) |
10 | | breq1 5150 |
. . . . . 6
β’ (π = π β (π β€ π β π β€ π)) |
11 | 10 | notbid 317 |
. . . . 5
β’ (π = π β (Β¬ π β€ π β Β¬ π β€ π)) |
12 | | oveq2 7413 |
. . . . . 6
β’ (π = π β (π β¨ π) = (π β¨ π)) |
13 | 12 | eqeq2d 2743 |
. . . . 5
β’ (π = π β ((π β¨ π) = (π β¨ π) β (π β¨ π) = (π β¨ π))) |
14 | 11, 13 | anbi12d 631 |
. . . 4
β’ (π = π β ((Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)) β (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) |
15 | 9, 14 | rspc2ev 3623 |
. . 3
β’ ((π β π β§ π β π΄ β§ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π))) β βπ¦ β π βπ β π΄ (Β¬ π β€ π¦ β§ (π β¨ π) = (π¦ β¨ π))) |
16 | 1, 2, 3, 4, 15 | syl112anc 1374 |
. 2
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β βπ¦ β π βπ β π΄ (Β¬ π β€ π¦ β§ (π β¨ π) = (π¦ β¨ π))) |
17 | | simpl1 1191 |
. . 3
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β πΎ β HL) |
18 | 17 | hllatd 38222 |
. . . 4
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β πΎ β Lat) |
19 | | eqid 2732 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
20 | | lvoli3.p |
. . . . . 6
β’ π = (LPlanesβπΎ) |
21 | 19, 20 | lplnbase 38393 |
. . . . 5
β’ (π β π β π β (BaseβπΎ)) |
22 | 1, 21 | syl 17 |
. . . 4
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β π β (BaseβπΎ)) |
23 | | lvoli3.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
24 | 19, 23 | atbase 38147 |
. . . . 5
β’ (π β π΄ β π β (BaseβπΎ)) |
25 | 2, 24 | syl 17 |
. . . 4
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β π β (BaseβπΎ)) |
26 | | lvoli3.j |
. . . . 5
β’ β¨ =
(joinβπΎ) |
27 | 19, 26 | latjcl 18388 |
. . . 4
β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β (π β¨ π) β (BaseβπΎ)) |
28 | 18, 22, 25, 27 | syl3anc 1371 |
. . 3
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β (π β¨ π) β (BaseβπΎ)) |
29 | | lvoli3.l |
. . . 4
β’ β€ =
(leβπΎ) |
30 | | lvoli3.v |
. . . 4
β’ π = (LVolsβπΎ) |
31 | 19, 29, 26, 23, 20, 30 | islvol3 38435 |
. . 3
β’ ((πΎ β HL β§ (π β¨ π) β (BaseβπΎ)) β ((π β¨ π) β π β βπ¦ β π βπ β π΄ (Β¬ π β€ π¦ β§ (π β¨ π) = (π¦ β¨ π)))) |
32 | 17, 28, 31 | syl2anc 584 |
. 2
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β ((π β¨ π) β π β βπ¦ β π βπ β π΄ (Β¬ π β€ π¦ β§ (π β¨ π) = (π¦ β¨ π)))) |
33 | 16, 32 | mpbird 256 |
1
β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β (π β¨ π) β π) |