Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvoli3 Structured version   Visualization version   GIF version

Theorem lvoli3 39564
Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
lvoli3.l = (le‘𝐾)
lvoli3.j = (join‘𝐾)
lvoli3.a 𝐴 = (Atoms‘𝐾)
lvoli3.p 𝑃 = (LPlanes‘𝐾)
lvoli3.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvoli3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → (𝑋 𝑄) ∈ 𝑉)

Proof of Theorem lvoli3
Dummy variables 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝑋𝑃)
2 simpl3 1194 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝑄𝐴)
3 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → ¬ 𝑄 𝑋)
4 eqidd 2730 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → (𝑋 𝑄) = (𝑋 𝑄))
5 breq2 5106 . . . . . 6 (𝑦 = 𝑋 → (𝑟 𝑦𝑟 𝑋))
65notbid 318 . . . . 5 (𝑦 = 𝑋 → (¬ 𝑟 𝑦 ↔ ¬ 𝑟 𝑋))
7 oveq1 7376 . . . . . 6 (𝑦 = 𝑋 → (𝑦 𝑟) = (𝑋 𝑟))
87eqeq2d 2740 . . . . 5 (𝑦 = 𝑋 → ((𝑋 𝑄) = (𝑦 𝑟) ↔ (𝑋 𝑄) = (𝑋 𝑟)))
96, 8anbi12d 632 . . . 4 (𝑦 = 𝑋 → ((¬ 𝑟 𝑦 ∧ (𝑋 𝑄) = (𝑦 𝑟)) ↔ (¬ 𝑟 𝑋 ∧ (𝑋 𝑄) = (𝑋 𝑟))))
10 breq1 5105 . . . . . 6 (𝑟 = 𝑄 → (𝑟 𝑋𝑄 𝑋))
1110notbid 318 . . . . 5 (𝑟 = 𝑄 → (¬ 𝑟 𝑋 ↔ ¬ 𝑄 𝑋))
12 oveq2 7377 . . . . . 6 (𝑟 = 𝑄 → (𝑋 𝑟) = (𝑋 𝑄))
1312eqeq2d 2740 . . . . 5 (𝑟 = 𝑄 → ((𝑋 𝑄) = (𝑋 𝑟) ↔ (𝑋 𝑄) = (𝑋 𝑄)))
1411, 13anbi12d 632 . . . 4 (𝑟 = 𝑄 → ((¬ 𝑟 𝑋 ∧ (𝑋 𝑄) = (𝑋 𝑟)) ↔ (¬ 𝑄 𝑋 ∧ (𝑋 𝑄) = (𝑋 𝑄))))
159, 14rspc2ev 3598 . . 3 ((𝑋𝑃𝑄𝐴 ∧ (¬ 𝑄 𝑋 ∧ (𝑋 𝑄) = (𝑋 𝑄))) → ∃𝑦𝑃𝑟𝐴𝑟 𝑦 ∧ (𝑋 𝑄) = (𝑦 𝑟)))
161, 2, 3, 4, 15syl112anc 1376 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → ∃𝑦𝑃𝑟𝐴𝑟 𝑦 ∧ (𝑋 𝑄) = (𝑦 𝑟)))
17 simpl1 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝐾 ∈ HL)
1817hllatd 39350 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝐾 ∈ Lat)
19 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
20 lvoli3.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
2119, 20lplnbase 39521 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
221, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝑋 ∈ (Base‘𝐾))
23 lvoli3.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2419, 23atbase 39275 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
252, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝑄 ∈ (Base‘𝐾))
26 lvoli3.j . . . . 5 = (join‘𝐾)
2719, 26latjcl 18380 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑋 𝑄) ∈ (Base‘𝐾))
2818, 22, 25, 27syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → (𝑋 𝑄) ∈ (Base‘𝐾))
29 lvoli3.l . . . 4 = (le‘𝐾)
30 lvoli3.v . . . 4 𝑉 = (LVols‘𝐾)
3119, 29, 26, 23, 20, 30islvol3 39563 . . 3 ((𝐾 ∈ HL ∧ (𝑋 𝑄) ∈ (Base‘𝐾)) → ((𝑋 𝑄) ∈ 𝑉 ↔ ∃𝑦𝑃𝑟𝐴𝑟 𝑦 ∧ (𝑋 𝑄) = (𝑦 𝑟))))
3217, 28, 31syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → ((𝑋 𝑄) ∈ 𝑉 ↔ ∃𝑦𝑃𝑟𝐴𝑟 𝑦 ∧ (𝑋 𝑄) = (𝑦 𝑟))))
3316, 32mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → (𝑋 𝑄) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  Latclat 18372  Atomscatm 39249  HLchlt 39336  LPlanesclpl 39479  LVolsclvol 39480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-lplanes 39486  df-lvols 39487
This theorem is referenced by:  dalem9  39659  dalem39  39698
  Copyright terms: Public domain W3C validator