Step | Hyp | Ref
| Expression |
1 | | simpl2 1191 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → 𝑋 ∈ 𝑃) |
2 | | simpl3 1192 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → 𝑄 ∈ 𝐴) |
3 | | simpr 485 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → ¬ 𝑄 ≤ 𝑋) |
4 | | eqidd 2739 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → (𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑄)) |
5 | | breq2 5078 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (𝑟 ≤ 𝑦 ↔ 𝑟 ≤ 𝑋)) |
6 | 5 | notbid 318 |
. . . . 5
⊢ (𝑦 = 𝑋 → (¬ 𝑟 ≤ 𝑦 ↔ ¬ 𝑟 ≤ 𝑋)) |
7 | | oveq1 7282 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (𝑦 ∨ 𝑟) = (𝑋 ∨ 𝑟)) |
8 | 7 | eqeq2d 2749 |
. . . . 5
⊢ (𝑦 = 𝑋 → ((𝑋 ∨ 𝑄) = (𝑦 ∨ 𝑟) ↔ (𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑟))) |
9 | 6, 8 | anbi12d 631 |
. . . 4
⊢ (𝑦 = 𝑋 → ((¬ 𝑟 ≤ 𝑦 ∧ (𝑋 ∨ 𝑄) = (𝑦 ∨ 𝑟)) ↔ (¬ 𝑟 ≤ 𝑋 ∧ (𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑟)))) |
10 | | breq1 5077 |
. . . . . 6
⊢ (𝑟 = 𝑄 → (𝑟 ≤ 𝑋 ↔ 𝑄 ≤ 𝑋)) |
11 | 10 | notbid 318 |
. . . . 5
⊢ (𝑟 = 𝑄 → (¬ 𝑟 ≤ 𝑋 ↔ ¬ 𝑄 ≤ 𝑋)) |
12 | | oveq2 7283 |
. . . . . 6
⊢ (𝑟 = 𝑄 → (𝑋 ∨ 𝑟) = (𝑋 ∨ 𝑄)) |
13 | 12 | eqeq2d 2749 |
. . . . 5
⊢ (𝑟 = 𝑄 → ((𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑟) ↔ (𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑄))) |
14 | 11, 13 | anbi12d 631 |
. . . 4
⊢ (𝑟 = 𝑄 → ((¬ 𝑟 ≤ 𝑋 ∧ (𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑟)) ↔ (¬ 𝑄 ≤ 𝑋 ∧ (𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑄)))) |
15 | 9, 14 | rspc2ev 3572 |
. . 3
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ (¬ 𝑄 ≤ 𝑋 ∧ (𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑄))) → ∃𝑦 ∈ 𝑃 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ (𝑋 ∨ 𝑄) = (𝑦 ∨ 𝑟))) |
16 | 1, 2, 3, 4, 15 | syl112anc 1373 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → ∃𝑦 ∈ 𝑃 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ (𝑋 ∨ 𝑄) = (𝑦 ∨ 𝑟))) |
17 | | simpl1 1190 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → 𝐾 ∈ HL) |
18 | 17 | hllatd 37378 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → 𝐾 ∈ Lat) |
19 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
20 | | lvoli3.p |
. . . . . 6
⊢ 𝑃 = (LPlanes‘𝐾) |
21 | 19, 20 | lplnbase 37548 |
. . . . 5
⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
22 | 1, 21 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → 𝑋 ∈ (Base‘𝐾)) |
23 | | lvoli3.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
24 | 19, 23 | atbase 37303 |
. . . . 5
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
25 | 2, 24 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → 𝑄 ∈ (Base‘𝐾)) |
26 | | lvoli3.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
27 | 19, 26 | latjcl 18157 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑄) ∈ (Base‘𝐾)) |
28 | 18, 22, 25, 27 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → (𝑋 ∨ 𝑄) ∈ (Base‘𝐾)) |
29 | | lvoli3.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
30 | | lvoli3.v |
. . . 4
⊢ 𝑉 = (LVols‘𝐾) |
31 | 19, 29, 26, 23, 20, 30 | islvol3 37590 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝑋 ∨ 𝑄) ∈ 𝑉 ↔ ∃𝑦 ∈ 𝑃 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ (𝑋 ∨ 𝑄) = (𝑦 ∨ 𝑟)))) |
32 | 17, 28, 31 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → ((𝑋 ∨ 𝑄) ∈ 𝑉 ↔ ∃𝑦 ∈ 𝑃 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ (𝑋 ∨ 𝑄) = (𝑦 ∨ 𝑟)))) |
33 | 16, 32 | mpbird 256 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ 𝑋) → (𝑋 ∨ 𝑄) ∈ 𝑉) |