Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvoli3 Structured version   Visualization version   GIF version

Theorem lvoli3 38436
Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
lvoli3.l ≀ = (leβ€˜πΎ)
lvoli3.j ∨ = (joinβ€˜πΎ)
lvoli3.a 𝐴 = (Atomsβ€˜πΎ)
lvoli3.p 𝑃 = (LPlanesβ€˜πΎ)
lvoli3.v 𝑉 = (LVolsβ€˜πΎ)
Assertion
Ref Expression
lvoli3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ (𝑋 ∨ 𝑄) ∈ 𝑉)

Proof of Theorem lvoli3
Dummy variables 𝑦 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ 𝑋 ∈ 𝑃)
2 simpl3 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ 𝑄 ∈ 𝐴)
3 simpr 485 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ Β¬ 𝑄 ≀ 𝑋)
4 eqidd 2733 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ (𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑄))
5 breq2 5151 . . . . . 6 (𝑦 = 𝑋 β†’ (π‘Ÿ ≀ 𝑦 ↔ π‘Ÿ ≀ 𝑋))
65notbid 317 . . . . 5 (𝑦 = 𝑋 β†’ (Β¬ π‘Ÿ ≀ 𝑦 ↔ Β¬ π‘Ÿ ≀ 𝑋))
7 oveq1 7412 . . . . . 6 (𝑦 = 𝑋 β†’ (𝑦 ∨ π‘Ÿ) = (𝑋 ∨ π‘Ÿ))
87eqeq2d 2743 . . . . 5 (𝑦 = 𝑋 β†’ ((𝑋 ∨ 𝑄) = (𝑦 ∨ π‘Ÿ) ↔ (𝑋 ∨ 𝑄) = (𝑋 ∨ π‘Ÿ)))
96, 8anbi12d 631 . . . 4 (𝑦 = 𝑋 β†’ ((Β¬ π‘Ÿ ≀ 𝑦 ∧ (𝑋 ∨ 𝑄) = (𝑦 ∨ π‘Ÿ)) ↔ (Β¬ π‘Ÿ ≀ 𝑋 ∧ (𝑋 ∨ 𝑄) = (𝑋 ∨ π‘Ÿ))))
10 breq1 5150 . . . . . 6 (π‘Ÿ = 𝑄 β†’ (π‘Ÿ ≀ 𝑋 ↔ 𝑄 ≀ 𝑋))
1110notbid 317 . . . . 5 (π‘Ÿ = 𝑄 β†’ (Β¬ π‘Ÿ ≀ 𝑋 ↔ Β¬ 𝑄 ≀ 𝑋))
12 oveq2 7413 . . . . . 6 (π‘Ÿ = 𝑄 β†’ (𝑋 ∨ π‘Ÿ) = (𝑋 ∨ 𝑄))
1312eqeq2d 2743 . . . . 5 (π‘Ÿ = 𝑄 β†’ ((𝑋 ∨ 𝑄) = (𝑋 ∨ π‘Ÿ) ↔ (𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑄)))
1411, 13anbi12d 631 . . . 4 (π‘Ÿ = 𝑄 β†’ ((Β¬ π‘Ÿ ≀ 𝑋 ∧ (𝑋 ∨ 𝑄) = (𝑋 ∨ π‘Ÿ)) ↔ (Β¬ 𝑄 ≀ 𝑋 ∧ (𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑄))))
159, 14rspc2ev 3623 . . 3 ((𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ (Β¬ 𝑄 ≀ 𝑋 ∧ (𝑋 ∨ 𝑄) = (𝑋 ∨ 𝑄))) β†’ βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑦 ∧ (𝑋 ∨ 𝑄) = (𝑦 ∨ π‘Ÿ)))
161, 2, 3, 4, 15syl112anc 1374 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑦 ∧ (𝑋 ∨ 𝑄) = (𝑦 ∨ π‘Ÿ)))
17 simpl1 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ 𝐾 ∈ HL)
1817hllatd 38222 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ 𝐾 ∈ Lat)
19 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
20 lvoli3.p . . . . . 6 𝑃 = (LPlanesβ€˜πΎ)
2119, 20lplnbase 38393 . . . . 5 (𝑋 ∈ 𝑃 β†’ 𝑋 ∈ (Baseβ€˜πΎ))
221, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ 𝑋 ∈ (Baseβ€˜πΎ))
23 lvoli3.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
2419, 23atbase 38147 . . . . 5 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
252, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
26 lvoli3.j . . . . 5 ∨ = (joinβ€˜πΎ)
2719, 26latjcl 18388 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑋 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
2818, 22, 25, 27syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ (𝑋 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
29 lvoli3.l . . . 4 ≀ = (leβ€˜πΎ)
30 lvoli3.v . . . 4 𝑉 = (LVolsβ€˜πΎ)
3119, 29, 26, 23, 20, 30islvol3 38435 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ ((𝑋 ∨ 𝑄) ∈ 𝑉 ↔ βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑦 ∧ (𝑋 ∨ 𝑄) = (𝑦 ∨ π‘Ÿ))))
3217, 28, 31syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ ((𝑋 ∨ 𝑄) ∈ 𝑉 ↔ βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑦 ∧ (𝑋 ∨ 𝑄) = (𝑦 ∨ π‘Ÿ))))
3316, 32mpbird 256 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ (𝑋 ∨ 𝑄) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  Latclat 18380  Atomscatm 38121  HLchlt 38208  LPlanesclpl 38351  LVolsclvol 38352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-lplanes 38358  df-lvols 38359
This theorem is referenced by:  dalem9  38531  dalem39  38570
  Copyright terms: Public domain W3C validator