Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islvol2 | Structured version Visualization version GIF version |
Description: The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012.) |
Ref | Expression |
---|---|
islvol5.b | ⊢ 𝐵 = (Base‘𝐾) |
islvol5.l | ⊢ ≤ = (le‘𝐾) |
islvol5.j | ⊢ ∨ = (join‘𝐾) |
islvol5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islvol5.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
islvol2 | ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 ((𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑝 ∨ 𝑞) ∨ 𝑟)) ∧ 𝑋 = (((𝑝 ∨ 𝑞) ∨ 𝑟) ∨ 𝑠))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islvol5.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | islvol5.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
3 | 1, 2 | lvolbase 37571 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝐵) |
4 | 3 | pm4.71ri 560 | . 2 ⊢ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉)) |
5 | islvol5.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
6 | islvol5.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
7 | islvol5.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 1, 5, 6, 7, 2 | islvol5 37572 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑉 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 ((𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑝 ∨ 𝑞) ∨ 𝑟)) ∧ 𝑋 = (((𝑝 ∨ 𝑞) ∨ 𝑟) ∨ 𝑠)))) |
9 | 8 | pm5.32da 578 | . 2 ⊢ (𝐾 ∈ HL → ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 ((𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑝 ∨ 𝑞) ∨ 𝑟)) ∧ 𝑋 = (((𝑝 ∨ 𝑞) ∨ 𝑟) ∨ 𝑠))))) |
10 | 4, 9 | syl5bb 282 | 1 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 ((𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑝 ∨ 𝑞) ∨ 𝑟)) ∧ 𝑋 = (((𝑝 ∨ 𝑞) ∨ 𝑟) ∨ 𝑠))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 lecple 16950 joincjn 18010 Atomscatm 37256 HLchlt 37343 LVolsclvol 37486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-proset 17994 df-poset 18012 df-plt 18029 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-p0 18124 df-lat 18131 df-clat 18198 df-oposet 37169 df-ol 37171 df-oml 37172 df-covers 37259 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 df-llines 37491 df-lplanes 37492 df-lvols 37493 |
This theorem is referenced by: lplncvrlvol2 37608 |
Copyright terms: Public domain | W3C validator |