MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matplusg Structured version   Visualization version   GIF version

Theorem matplusg 21158
Description: The matrix ring has the same addition as its underlying group. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypotheses
Ref Expression
matbas.a 𝐴 = (𝑁 Mat 𝑅)
matbas.g 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
Assertion
Ref Expression
matplusg ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (+g𝐺) = (+g𝐴))

Proof of Theorem matplusg
StepHypRef Expression
1 plusgid 16692 . . 3 +g = Slot (+g‘ndx)
2 plusgndxnmulrndx 16713 . . 3 (+g‘ndx) ≠ (.r‘ndx)
31, 2setsnid 16635 . 2 (+g𝐺) = (+g‘(𝐺 sSet ⟨(.r‘ndx), (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)⟩))
4 matbas.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
5 matbas.g . . . 4 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
6 eqid 2738 . . . 4 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
74, 5, 6matval 21155 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = (𝐺 sSet ⟨(.r‘ndx), (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)⟩))
87fveq2d 6672 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (+g𝐴) = (+g‘(𝐺 sSet ⟨(.r‘ndx), (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)⟩)))
93, 8eqtr4id 2792 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (+g𝐺) = (+g𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  cop 4519  cotp 4521   × cxp 5517  cfv 6333  (class class class)co 7164  Fincfn 8548  ndxcnx 16576   sSet csts 16577  +gcplusg 16661  .rcmulr 16662   freeLMod cfrlm 20555   maMul cmmul 21129   Mat cmat 21151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-ot 4522  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-ndx 16582  df-slot 16583  df-sets 16586  df-plusg 16674  df-mulr 16675  df-mat 21152
This theorem is referenced by:  mat0  21161  matinvg  21162  matplusg2  21171  matlmod  21173  matsubg  21176  matgsum  21181  matdim  31262
  Copyright terms: Public domain W3C validator