![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matbas | Structured version Visualization version GIF version |
Description: The matrix ring has the same base set as its underlying group. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
Ref | Expression |
---|---|
matbas.a | β’ π΄ = (π Mat π ) |
matbas.g | β’ πΊ = (π freeLMod (π Γ π)) |
Ref | Expression |
---|---|
matbas | β’ ((π β Fin β§ π β π) β (BaseβπΊ) = (Baseβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 17183 | . . 3 β’ Base = Slot (Baseβndx) | |
2 | basendxnmulrndx 17276 | . . 3 β’ (Baseβndx) β (.rβndx) | |
3 | 1, 2 | setsnid 17178 | . 2 β’ (BaseβπΊ) = (Baseβ(πΊ sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©)) |
4 | matbas.a | . . . 4 β’ π΄ = (π Mat π ) | |
5 | matbas.g | . . . 4 β’ πΊ = (π freeLMod (π Γ π)) | |
6 | eqid 2728 | . . . 4 β’ (π maMul β¨π, π, πβ©) = (π maMul β¨π, π, πβ©) | |
7 | 4, 5, 6 | matval 22324 | . . 3 β’ ((π β Fin β§ π β π) β π΄ = (πΊ sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©)) |
8 | 7 | fveq2d 6901 | . 2 β’ ((π β Fin β§ π β π) β (Baseβπ΄) = (Baseβ(πΊ sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©))) |
9 | 3, 8 | eqtr4id 2787 | 1 β’ ((π β Fin β§ π β π) β (BaseβπΊ) = (Baseβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β¨cop 4635 β¨cotp 4637 Γ cxp 5676 βcfv 6548 (class class class)co 7420 Fincfn 8964 sSet csts 17132 ndxcnx 17162 Basecbs 17180 .rcmulr 17234 freeLMod cfrlm 21680 maMul cmmul 22298 Mat cmat 22320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-ot 4638 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-mulr 17247 df-mat 22321 |
This theorem is referenced by: mat0 22332 matinvg 22333 matbas2 22336 matplusg2 22342 matvsca2 22343 matlmod 22344 matsubg 22347 matsubgcell 22349 matgsum 22352 matdim 33313 matunitlindflem2 37090 matunitlindf 37091 |
Copyright terms: Public domain | W3C validator |