| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matmulr | Structured version Visualization version GIF version | ||
| Description: Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| matmulr.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matmulr.t | ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
| Ref | Expression |
|---|---|
| matmulr | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7386 | . . . 4 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V | |
| 2 | matmulr.t | . . . . 5 ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
| 3 | 2 | ovexi 7387 | . . . 4 ⊢ · ∈ V |
| 4 | 1, 3 | pm3.2i 470 | . . 3 ⊢ ((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V) |
| 5 | mulridx 17217 | . . . 4 ⊢ .r = Slot (.r‘ndx) | |
| 6 | 5 | setsid 17136 | . . 3 ⊢ (((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
| 7 | 4, 6 | mp1i 13 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
| 8 | matmulr.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 9 | eqid 2729 | . . . 4 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
| 10 | 8, 9, 2 | matval 22314 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = ((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉)) |
| 11 | 10 | fveq2d 6830 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (.r‘𝐴) = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
| 12 | 7, 11 | eqtr4d 2767 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 〈cotp 4587 × cxp 5621 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 sSet csts 17092 ndxcnx 17122 .rcmulr 17180 freeLMod cfrlm 21671 maMul cmmul 22293 Mat cmat 22310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-ot 4588 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-2 12209 df-3 12210 df-sets 17093 df-slot 17111 df-ndx 17123 df-mulr 17193 df-mat 22311 |
| This theorem is referenced by: matring 22346 matassa 22347 matmulcell 22348 mpomatmul 22349 mat1 22350 mattposm 22362 mat1dimmul 22379 dmatmul 22400 mdetmul 22526 madurid 22547 slesolinv 22583 slesolinvbi 22584 cramerimplem3 22588 mat2pmatmul 22634 decpmatmullem 22674 decpmatmul 22675 matunitlindflem2 37596 |
| Copyright terms: Public domain | W3C validator |