| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matmulr | Structured version Visualization version GIF version | ||
| Description: Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| matmulr.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matmulr.t | ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
| Ref | Expression |
|---|---|
| matmulr | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7379 | . . . 4 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V | |
| 2 | matmulr.t | . . . . 5 ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
| 3 | 2 | ovexi 7380 | . . . 4 ⊢ · ∈ V |
| 4 | 1, 3 | pm3.2i 470 | . . 3 ⊢ ((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V) |
| 5 | mulridx 17196 | . . . 4 ⊢ .r = Slot (.r‘ndx) | |
| 6 | 5 | setsid 17115 | . . 3 ⊢ (((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
| 7 | 4, 6 | mp1i 13 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
| 8 | matmulr.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 9 | eqid 2731 | . . . 4 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
| 10 | 8, 9, 2 | matval 22324 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = ((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉)) |
| 11 | 10 | fveq2d 6826 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (.r‘𝐴) = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
| 12 | 7, 11 | eqtr4d 2769 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 〈cotp 4584 × cxp 5614 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 sSet csts 17071 ndxcnx 17101 .rcmulr 17159 freeLMod cfrlm 21681 maMul cmmul 22303 Mat cmat 22320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-2 12185 df-3 12186 df-sets 17072 df-slot 17090 df-ndx 17102 df-mulr 17172 df-mat 22321 |
| This theorem is referenced by: matring 22356 matassa 22357 matmulcell 22358 mpomatmul 22359 mat1 22360 mattposm 22372 mat1dimmul 22389 dmatmul 22410 mdetmul 22536 madurid 22557 slesolinv 22593 slesolinvbi 22594 cramerimplem3 22598 mat2pmatmul 22644 decpmatmullem 22684 decpmatmul 22685 matunitlindflem2 37656 |
| Copyright terms: Public domain | W3C validator |