Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matmulr | Structured version Visualization version GIF version |
Description: Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
Ref | Expression |
---|---|
matmulr.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matmulr.t | ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
Ref | Expression |
---|---|
matmulr | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7293 | . . . 4 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V | |
2 | matmulr.t | . . . . 5 ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
3 | 2 | ovexi 7294 | . . . 4 ⊢ · ∈ V |
4 | 1, 3 | pm3.2i 470 | . . 3 ⊢ ((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V) |
5 | mulrid 16948 | . . . 4 ⊢ .r = Slot (.r‘ndx) | |
6 | 5 | setsid 16853 | . . 3 ⊢ (((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
7 | 4, 6 | mp1i 13 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
8 | matmulr.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | eqid 2737 | . . . 4 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
10 | 8, 9, 2 | matval 21502 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = ((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉)) |
11 | 10 | fveq2d 6765 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (.r‘𝐴) = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
12 | 7, 11 | eqtr4d 2780 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3427 〈cop 4569 〈cotp 4571 × cxp 5583 ‘cfv 6423 (class class class)co 7260 Fincfn 8696 sSet csts 16808 ndxcnx 16838 .rcmulr 16907 freeLMod cfrlm 20897 maMul cmmul 21476 Mat cmat 21498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-1cn 10876 ax-addcl 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-ot 4572 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-2nd 7810 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-nn 11920 df-2 11982 df-3 11983 df-sets 16809 df-slot 16827 df-ndx 16839 df-mulr 16920 df-mat 21499 |
This theorem is referenced by: matring 21536 matassa 21537 matmulcell 21538 mpomatmul 21539 mat1 21540 mattposm 21552 mat1dimmul 21569 dmatmul 21590 mdetmul 21716 madurid 21737 slesolinv 21773 slesolinvbi 21774 cramerimplem3 21778 mat2pmatmul 21824 decpmatmullem 21864 decpmatmul 21865 matunitlindflem2 35743 |
Copyright terms: Public domain | W3C validator |