![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matmulr | Structured version Visualization version GIF version |
Description: Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
Ref | Expression |
---|---|
matmulr.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matmulr.t | ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
Ref | Expression |
---|---|
matmulr | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6956 | . . . 4 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V | |
2 | matmulr.t | . . . . 5 ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
3 | ovex 6956 | . . . . 5 ⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) ∈ V | |
4 | 2, 3 | eqeltri 2855 | . . . 4 ⊢ · ∈ V |
5 | 1, 4 | pm3.2i 464 | . . 3 ⊢ ((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V) |
6 | mulrid 16393 | . . . 4 ⊢ .r = Slot (.r‘ndx) | |
7 | 6 | setsid 16314 | . . 3 ⊢ (((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
8 | 5, 7 | mp1i 13 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
9 | matmulr.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
10 | eqid 2778 | . . . 4 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
11 | 9, 10, 2 | matval 20625 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = ((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉)) |
12 | 11 | fveq2d 6452 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (.r‘𝐴) = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
13 | 8, 12 | eqtr4d 2817 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 〈cop 4404 〈cotp 4406 × cxp 5355 ‘cfv 6137 (class class class)co 6924 Fincfn 8243 ndxcnx 16256 sSet csts 16257 .rcmulr 16343 freeLMod cfrlm 20493 maMul cmmul 20597 Mat cmat 20621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-1cn 10332 ax-addcl 10334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-ot 4407 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-nn 11379 df-2 11442 df-3 11443 df-ndx 16262 df-slot 16263 df-sets 16266 df-mulr 16356 df-mat 20622 |
This theorem is referenced by: matring 20657 matassa 20658 matmulcell 20659 matmulcellOLD 20660 mpt2matmul 20661 mat1 20662 mattposm 20674 mat1dimmul 20691 dmatmul 20712 mdetmul 20838 madurid 20859 slesolinv 20896 slesolinvbi 20897 cramerimplem3 20902 mat2pmatmul 20947 decpmatmullem 20987 decpmatmul 20988 matunitlindflem2 34037 |
Copyright terms: Public domain | W3C validator |