Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matmulr | Structured version Visualization version GIF version |
Description: Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
Ref | Expression |
---|---|
matmulr.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matmulr.t | ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
Ref | Expression |
---|---|
matmulr | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7308 | . . . 4 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V | |
2 | matmulr.t | . . . . 5 ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
3 | 2 | ovexi 7309 | . . . 4 ⊢ · ∈ V |
4 | 1, 3 | pm3.2i 471 | . . 3 ⊢ ((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V) |
5 | mulrid 17004 | . . . 4 ⊢ .r = Slot (.r‘ndx) | |
6 | 5 | setsid 16909 | . . 3 ⊢ (((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
7 | 4, 6 | mp1i 13 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
8 | matmulr.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | eqid 2738 | . . . 4 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
10 | 8, 9, 2 | matval 21558 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = ((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉)) |
11 | 10 | fveq2d 6778 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (.r‘𝐴) = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet 〈(.r‘ndx), · 〉))) |
12 | 7, 11 | eqtr4d 2781 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 〈cotp 4569 × cxp 5587 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 sSet csts 16864 ndxcnx 16894 .rcmulr 16963 freeLMod cfrlm 20953 maMul cmmul 21532 Mat cmat 21554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-ot 4570 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-mulr 16976 df-mat 21555 |
This theorem is referenced by: matring 21592 matassa 21593 matmulcell 21594 mpomatmul 21595 mat1 21596 mattposm 21608 mat1dimmul 21625 dmatmul 21646 mdetmul 21772 madurid 21793 slesolinv 21829 slesolinvbi 21830 cramerimplem3 21834 mat2pmatmul 21880 decpmatmullem 21920 decpmatmul 21921 matunitlindflem2 35774 |
Copyright terms: Public domain | W3C validator |