![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matmulr | Structured version Visualization version GIF version |
Description: Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
Ref | Expression |
---|---|
matmulr.a | β’ π΄ = (π Mat π ) |
matmulr.t | β’ Β· = (π maMul β¨π, π, πβ©) |
Ref | Expression |
---|---|
matmulr | β’ ((π β Fin β§ π β π) β Β· = (.rβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7441 | . . . 4 β’ (π freeLMod (π Γ π)) β V | |
2 | matmulr.t | . . . . 5 β’ Β· = (π maMul β¨π, π, πβ©) | |
3 | 2 | ovexi 7442 | . . . 4 β’ Β· β V |
4 | 1, 3 | pm3.2i 471 | . . 3 β’ ((π freeLMod (π Γ π)) β V β§ Β· β V) |
5 | mulridx 17238 | . . . 4 β’ .r = Slot (.rβndx) | |
6 | 5 | setsid 17140 | . . 3 β’ (((π freeLMod (π Γ π)) β V β§ Β· β V) β Β· = (.rβ((π freeLMod (π Γ π)) sSet β¨(.rβndx), Β· β©))) |
7 | 4, 6 | mp1i 13 | . 2 β’ ((π β Fin β§ π β π) β Β· = (.rβ((π freeLMod (π Γ π)) sSet β¨(.rβndx), Β· β©))) |
8 | matmulr.a | . . . 4 β’ π΄ = (π Mat π ) | |
9 | eqid 2732 | . . . 4 β’ (π freeLMod (π Γ π)) = (π freeLMod (π Γ π)) | |
10 | 8, 9, 2 | matval 21910 | . . 3 β’ ((π β Fin β§ π β π) β π΄ = ((π freeLMod (π Γ π)) sSet β¨(.rβndx), Β· β©)) |
11 | 10 | fveq2d 6895 | . 2 β’ ((π β Fin β§ π β π) β (.rβπ΄) = (.rβ((π freeLMod (π Γ π)) sSet β¨(.rβndx), Β· β©))) |
12 | 7, 11 | eqtr4d 2775 | 1 β’ ((π β Fin β§ π β π) β Β· = (.rβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β¨cop 4634 β¨cotp 4636 Γ cxp 5674 βcfv 6543 (class class class)co 7408 Fincfn 8938 sSet csts 17095 ndxcnx 17125 .rcmulr 17197 freeLMod cfrlm 21300 maMul cmmul 21884 Mat cmat 21906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-nn 12212 df-2 12274 df-3 12275 df-sets 17096 df-slot 17114 df-ndx 17126 df-mulr 17210 df-mat 21907 |
This theorem is referenced by: matring 21944 matassa 21945 matmulcell 21946 mpomatmul 21947 mat1 21948 mattposm 21960 mat1dimmul 21977 dmatmul 21998 mdetmul 22124 madurid 22145 slesolinv 22181 slesolinvbi 22182 cramerimplem3 22186 mat2pmatmul 22232 decpmatmullem 22272 decpmatmul 22273 matunitlindflem2 36480 |
Copyright terms: Public domain | W3C validator |