![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matscaOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of matsca 21915 as of 12-Nov-2024. The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
matbas.a | β’ π΄ = (π Mat π ) |
matbas.g | β’ πΊ = (π freeLMod (π Γ π)) |
Ref | Expression |
---|---|
matscaOLD | β’ ((π β Fin β§ π β π) β (ScalarβπΊ) = (Scalarβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaid 17260 | . . 3 β’ Scalar = Slot (Scalarβndx) | |
2 | 3re 12292 | . . . . 5 β’ 3 β β | |
3 | 3lt5 12390 | . . . . 5 β’ 3 < 5 | |
4 | 2, 3 | gtneii 11326 | . . . 4 β’ 5 β 3 |
5 | scandx 17259 | . . . . 5 β’ (Scalarβndx) = 5 | |
6 | mulrndx 17238 | . . . . 5 β’ (.rβndx) = 3 | |
7 | 5, 6 | neeq12i 3008 | . . . 4 β’ ((Scalarβndx) β (.rβndx) β 5 β 3) |
8 | 4, 7 | mpbir 230 | . . 3 β’ (Scalarβndx) β (.rβndx) |
9 | 1, 8 | setsnid 17142 | . 2 β’ (ScalarβπΊ) = (Scalarβ(πΊ sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©)) |
10 | matbas.a | . . . 4 β’ π΄ = (π Mat π ) | |
11 | matbas.g | . . . 4 β’ πΊ = (π freeLMod (π Γ π)) | |
12 | eqid 2733 | . . . 4 β’ (π maMul β¨π, π, πβ©) = (π maMul β¨π, π, πβ©) | |
13 | 10, 11, 12 | matval 21911 | . . 3 β’ ((π β Fin β§ π β π) β π΄ = (πΊ sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©)) |
14 | 13 | fveq2d 6896 | . 2 β’ ((π β Fin β§ π β π) β (Scalarβπ΄) = (Scalarβ(πΊ sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©))) |
15 | 9, 14 | eqtr4id 2792 | 1 β’ ((π β Fin β§ π β π) β (ScalarβπΊ) = (Scalarβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 β¨cop 4635 β¨cotp 4637 Γ cxp 5675 βcfv 6544 (class class class)co 7409 Fincfn 8939 3c3 12268 5c5 12270 sSet csts 17096 ndxcnx 17126 .rcmulr 17198 Scalarcsca 17200 freeLMod cfrlm 21301 maMul cmmul 21885 Mat cmat 21907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-ot 4638 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-sets 17097 df-slot 17115 df-ndx 17127 df-mulr 17211 df-sca 17213 df-mat 21908 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |