MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matscaOLD Structured version   Visualization version   GIF version

Theorem matscaOLD 22387
Description: Obsolete version of matsca 22386 as of 12-Nov-2024. The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
matbas.a 𝐴 = (𝑁 Mat 𝑅)
matbas.g 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
Assertion
Ref Expression
matscaOLD ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (Scalar‘𝐺) = (Scalar‘𝐴))

Proof of Theorem matscaOLD
StepHypRef Expression
1 scaid 17336 . . 3 Scalar = Slot (Scalar‘ndx)
2 3re 12329 . . . . 5 3 ∈ ℝ
3 3lt5 12427 . . . . 5 3 < 5
42, 3gtneii 11356 . . . 4 5 ≠ 3
5 scandx 17335 . . . . 5 (Scalar‘ndx) = 5
6 mulrndx 17315 . . . . 5 (.r‘ndx) = 3
75, 6neeq12i 2997 . . . 4 ((Scalar‘ndx) ≠ (.r‘ndx) ↔ 5 ≠ 3)
84, 7mpbir 231 . . 3 (Scalar‘ndx) ≠ (.r‘ndx)
91, 8setsnid 17228 . 2 (Scalar‘𝐺) = (Scalar‘(𝐺 sSet ⟨(.r‘ndx), (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)⟩))
10 matbas.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
11 matbas.g . . . 4 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
12 eqid 2734 . . . 4 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
1310, 11, 12matval 22382 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = (𝐺 sSet ⟨(.r‘ndx), (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)⟩))
1413fveq2d 6891 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (Scalar‘𝐴) = (Scalar‘(𝐺 sSet ⟨(.r‘ndx), (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)⟩)))
159, 14eqtr4id 2788 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (Scalar‘𝐺) = (Scalar‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  cop 4614  cotp 4616   × cxp 5665  cfv 6542  (class class class)co 7414  Fincfn 8968  3c3 12305  5c5 12307   sSet csts 17183  ndxcnx 17213  .rcmulr 17278  Scalarcsca 17280   freeLMod cfrlm 21733   maMul cmmul 22361   Mat cmat 22378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-ot 4617  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-sets 17184  df-slot 17202  df-ndx 17214  df-mulr 17291  df-sca 17293  df-mat 22379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator