| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matscaOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of matsca 22386 as of 12-Nov-2024. The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| matbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matbas.g | ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) |
| Ref | Expression |
|---|---|
| matscaOLD | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘𝐺) = (Scalar‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaid 17336 | . . 3 ⊢ Scalar = Slot (Scalar‘ndx) | |
| 2 | 3re 12329 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 3 | 3lt5 12427 | . . . . 5 ⊢ 3 < 5 | |
| 4 | 2, 3 | gtneii 11356 | . . . 4 ⊢ 5 ≠ 3 |
| 5 | scandx 17335 | . . . . 5 ⊢ (Scalar‘ndx) = 5 | |
| 6 | mulrndx 17315 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
| 7 | 5, 6 | neeq12i 2997 | . . . 4 ⊢ ((Scalar‘ndx) ≠ (.r‘ndx) ↔ 5 ≠ 3) |
| 8 | 4, 7 | mpbir 231 | . . 3 ⊢ (Scalar‘ndx) ≠ (.r‘ndx) |
| 9 | 1, 8 | setsnid 17228 | . 2 ⊢ (Scalar‘𝐺) = (Scalar‘(𝐺 sSet 〈(.r‘ndx), (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)〉)) |
| 10 | matbas.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 11 | matbas.g | . . . 4 ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) | |
| 12 | eqid 2734 | . . . 4 ⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
| 13 | 10, 11, 12 | matval 22382 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = (𝐺 sSet 〈(.r‘ndx), (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)〉)) |
| 14 | 13 | fveq2d 6891 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘𝐴) = (Scalar‘(𝐺 sSet 〈(.r‘ndx), (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)〉))) |
| 15 | 9, 14 | eqtr4id 2788 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘𝐺) = (Scalar‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 〈cop 4614 〈cotp 4616 × cxp 5665 ‘cfv 6542 (class class class)co 7414 Fincfn 8968 3c3 12305 5c5 12307 sSet csts 17183 ndxcnx 17213 .rcmulr 17278 Scalarcsca 17280 freeLMod cfrlm 21733 maMul cmmul 22361 Mat cmat 22378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-ot 4617 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-sets 17184 df-slot 17202 df-ndx 17214 df-mulr 17291 df-sca 17293 df-mat 22379 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |