![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matscaOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of matsca 22333 as of 12-Nov-2024. The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
matbas.a | β’ π΄ = (π Mat π ) |
matbas.g | β’ πΊ = (π freeLMod (π Γ π)) |
Ref | Expression |
---|---|
matscaOLD | β’ ((π β Fin β§ π β π) β (ScalarβπΊ) = (Scalarβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaid 17295 | . . 3 β’ Scalar = Slot (Scalarβndx) | |
2 | 3re 12322 | . . . . 5 β’ 3 β β | |
3 | 3lt5 12420 | . . . . 5 β’ 3 < 5 | |
4 | 2, 3 | gtneii 11356 | . . . 4 β’ 5 β 3 |
5 | scandx 17294 | . . . . 5 β’ (Scalarβndx) = 5 | |
6 | mulrndx 17273 | . . . . 5 β’ (.rβndx) = 3 | |
7 | 5, 6 | neeq12i 2997 | . . . 4 β’ ((Scalarβndx) β (.rβndx) β 5 β 3) |
8 | 4, 7 | mpbir 230 | . . 3 β’ (Scalarβndx) β (.rβndx) |
9 | 1, 8 | setsnid 17177 | . 2 β’ (ScalarβπΊ) = (Scalarβ(πΊ sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©)) |
10 | matbas.a | . . . 4 β’ π΄ = (π Mat π ) | |
11 | matbas.g | . . . 4 β’ πΊ = (π freeLMod (π Γ π)) | |
12 | eqid 2725 | . . . 4 β’ (π maMul β¨π, π, πβ©) = (π maMul β¨π, π, πβ©) | |
13 | 10, 11, 12 | matval 22329 | . . 3 β’ ((π β Fin β§ π β π) β π΄ = (πΊ sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©)) |
14 | 13 | fveq2d 6896 | . 2 β’ ((π β Fin β§ π β π) β (Scalarβπ΄) = (Scalarβ(πΊ sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©))) |
15 | 9, 14 | eqtr4id 2784 | 1 β’ ((π β Fin β§ π β π) β (ScalarβπΊ) = (Scalarβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 β¨cop 4630 β¨cotp 4632 Γ cxp 5670 βcfv 6543 (class class class)co 7416 Fincfn 8962 3c3 12298 5c5 12300 sSet csts 17131 ndxcnx 17161 .rcmulr 17233 Scalarcsca 17235 freeLMod cfrlm 21684 maMul cmmul 22308 Mat cmat 22325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-ot 4633 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-sets 17132 df-slot 17150 df-ndx 17162 df-mulr 17246 df-sca 17248 df-mat 22326 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |