Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliccico Structured version   Visualization version   GIF version

Theorem voliccico 44705
Description: A closed interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
voliccico.1 (𝜑𝐴 ∈ ℝ)
voliccico.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
voliccico (𝜑 → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))

Proof of Theorem voliccico
StepHypRef Expression
1 iftrue 4534 . . . . . 6 (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
21adantl 482 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
3 voliccico.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
43recnd 11241 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
54subidd 11558 . . . . . . . 8 (𝜑 → (𝐵𝐵) = 0)
65eqcomd 2738 . . . . . . 7 (𝜑 → 0 = (𝐵𝐵))
76ad2antrr 724 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 0 = (𝐵𝐵))
8 iffalse 4537 . . . . . . 7 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
98adantl 482 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
10 simpll 765 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝜑)
11 voliccico.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
1310, 3syl 17 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
14 simpr 485 . . . . . . . . 9 ((𝜑𝐴𝐵) → 𝐴𝐵)
1514adantr 481 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴𝐵)
16 simpr 485 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
1712, 13, 15, 16lenlteq 44064 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 = 𝐵)
18 oveq2 7416 . . . . . . . 8 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
1918adantl 482 . . . . . . 7 ((𝜑𝐴 = 𝐵) → (𝐵𝐴) = (𝐵𝐵))
2010, 17, 19syl2anc 584 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴) = (𝐵𝐵))
217, 9, 203eqtr4d 2782 . . . . 5 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
222, 21pm2.61dan 811 . . . 4 ((𝜑𝐴𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
2322eqcomd 2738 . . 3 ((𝜑𝐴𝐵) → (𝐵𝐴) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
2411adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
253adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
26 volicc 44704 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵𝐴))
2724, 25, 14, 26syl3anc 1371 . . 3 ((𝜑𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵𝐴))
28 volico 44689 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
2911, 3, 28syl2anc 584 . . . 4 (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3029adantr 481 . . 3 ((𝜑𝐴𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3123, 27, 303eqtr4d 2782 . 2 ((𝜑𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
32 simpl 483 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝜑)
33 simpr 485 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → ¬ 𝐴𝐵)
3432, 3syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐵 ∈ ℝ)
3532, 11syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐴 ∈ ℝ)
3634, 35ltnled 11360 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
3733, 36mpbird 256 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐵 < 𝐴)
38 simpr 485 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
3911rexrd 11263 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
403rexrd 11263 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
41 icc0 13371 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
4239, 40, 41syl2anc 584 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
4342adantr 481 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
4438, 43mpbird 256 . . . . 5 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
453adantr 481 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ)
4611adantr 481 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ)
4745, 46, 38ltled 11361 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐵𝐴)
4846rexrd 11263 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ*)
4945rexrd 11263 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ*)
50 ico0 13369 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
5148, 49, 50syl2anc 584 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
5247, 51mpbird 256 . . . . 5 ((𝜑𝐵 < 𝐴) → (𝐴[,)𝐵) = ∅)
5344, 52eqtr4d 2775 . . . 4 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = (𝐴[,)𝐵))
5453fveq2d 6895 . . 3 ((𝜑𝐵 < 𝐴) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
5532, 37, 54syl2anc 584 . 2 ((𝜑 ∧ ¬ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
5631, 55pm2.61dan 811 1 (𝜑 → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  c0 4322  ifcif 4528   class class class wbr 5148  cfv 6543  (class class class)co 7408  cr 11108  0cc0 11109  *cxr 11246   < clt 11247  cle 11248  cmin 11443  [,)cico 13325  [,]cicc 13326  volcvol 24979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-ioo 13327  df-ico 13329  df-icc 13330  df-fz 13484  df-fzo 13627  df-fl 13756  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-rlim 15432  df-sum 15632  df-rest 17367  df-topgen 17388  df-psmet 20935  df-xmet 20936  df-met 20937  df-bl 20938  df-mopn 20939  df-top 22395  df-topon 22412  df-bases 22448  df-cmp 22890  df-ovol 24980  df-vol 24981
This theorem is referenced by:  vonn0icc  45394
  Copyright terms: Public domain W3C validator