Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliccico Structured version   Visualization version   GIF version

Theorem voliccico 45378
Description: A closed interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
voliccico.1 (𝜑𝐴 ∈ ℝ)
voliccico.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
voliccico (𝜑 → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))

Proof of Theorem voliccico
StepHypRef Expression
1 iftrue 4531 . . . . . 6 (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
21adantl 481 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
3 voliccico.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
43recnd 11267 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
54subidd 11584 . . . . . . . 8 (𝜑 → (𝐵𝐵) = 0)
65eqcomd 2734 . . . . . . 7 (𝜑 → 0 = (𝐵𝐵))
76ad2antrr 725 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 0 = (𝐵𝐵))
8 iffalse 4534 . . . . . . 7 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
98adantl 481 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
10 simpll 766 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝜑)
11 voliccico.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
1310, 3syl 17 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
14 simpr 484 . . . . . . . . 9 ((𝜑𝐴𝐵) → 𝐴𝐵)
1514adantr 480 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴𝐵)
16 simpr 484 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
1712, 13, 15, 16lenlteq 44737 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 = 𝐵)
18 oveq2 7423 . . . . . . . 8 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
1918adantl 481 . . . . . . 7 ((𝜑𝐴 = 𝐵) → (𝐵𝐴) = (𝐵𝐵))
2010, 17, 19syl2anc 583 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴) = (𝐵𝐵))
217, 9, 203eqtr4d 2778 . . . . 5 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
222, 21pm2.61dan 812 . . . 4 ((𝜑𝐴𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
2322eqcomd 2734 . . 3 ((𝜑𝐴𝐵) → (𝐵𝐴) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
2411adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
253adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
26 volicc 45377 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵𝐴))
2724, 25, 14, 26syl3anc 1369 . . 3 ((𝜑𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵𝐴))
28 volico 45362 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
2911, 3, 28syl2anc 583 . . . 4 (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3029adantr 480 . . 3 ((𝜑𝐴𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3123, 27, 303eqtr4d 2778 . 2 ((𝜑𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
32 simpl 482 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝜑)
33 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → ¬ 𝐴𝐵)
3432, 3syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐵 ∈ ℝ)
3532, 11syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐴 ∈ ℝ)
3634, 35ltnled 11386 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
3733, 36mpbird 257 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐵 < 𝐴)
38 simpr 484 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
3911rexrd 11289 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
403rexrd 11289 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
41 icc0 13399 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
4239, 40, 41syl2anc 583 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
4342adantr 480 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
4438, 43mpbird 257 . . . . 5 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
453adantr 480 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ)
4611adantr 480 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ)
4745, 46, 38ltled 11387 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐵𝐴)
4846rexrd 11289 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ*)
4945rexrd 11289 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ*)
50 ico0 13397 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
5148, 49, 50syl2anc 583 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
5247, 51mpbird 257 . . . . 5 ((𝜑𝐵 < 𝐴) → (𝐴[,)𝐵) = ∅)
5344, 52eqtr4d 2771 . . . 4 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = (𝐴[,)𝐵))
5453fveq2d 6896 . . 3 ((𝜑𝐵 < 𝐴) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
5532, 37, 54syl2anc 583 . 2 ((𝜑 ∧ ¬ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
5631, 55pm2.61dan 812 1 (𝜑 → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  c0 4319  ifcif 4525   class class class wbr 5143  cfv 6543  (class class class)co 7415  cr 11132  0cc0 11133  *cxr 11272   < clt 11273  cle 11274  cmin 11469  [,)cico 13353  [,]cicc 13354  volcvol 25386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-2o 8482  df-er 8719  df-map 8841  df-pm 8842  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fi 9429  df-sup 9460  df-inf 9461  df-oi 9528  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-q 12958  df-rp 13002  df-xneg 13119  df-xadd 13120  df-xmul 13121  df-ioo 13355  df-ico 13357  df-icc 13358  df-fz 13512  df-fzo 13655  df-fl 13784  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459  df-rlim 15460  df-sum 15660  df-rest 17398  df-topgen 17419  df-psmet 21265  df-xmet 21266  df-met 21267  df-bl 21268  df-mopn 21269  df-top 22790  df-topon 22807  df-bases 22843  df-cmp 23285  df-ovol 25387  df-vol 25388
This theorem is referenced by:  vonn0icc  46067
  Copyright terms: Public domain W3C validator