![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measfrge0 | Structured version Visualization version GIF version |
Description: A measure is a function over its base to the positive extended reals. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
Ref | Expression |
---|---|
measfrge0 | β’ (π β (measuresβπ) β π:πβΆ(0[,]+β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | measbase 33195 | . . . 4 β’ (π β (measuresβπ) β π β βͺ ran sigAlgebra) | |
2 | ismeas 33197 | . . . 4 β’ (π β βͺ ran sigAlgebra β (π β (measuresβπ) β (π:πβΆ(0[,]+β) β§ (πββ ) = 0 β§ βπ¦ β π« π((π¦ βΌ Ο β§ Disj π₯ β π¦ π₯) β (πββͺ π¦) = Ξ£*π₯ β π¦(πβπ₯))))) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π β (measuresβπ) β (π β (measuresβπ) β (π:πβΆ(0[,]+β) β§ (πββ ) = 0 β§ βπ¦ β π« π((π¦ βΌ Ο β§ Disj π₯ β π¦ π₯) β (πββͺ π¦) = Ξ£*π₯ β π¦(πβπ₯))))) |
4 | 3 | ibi 267 | . 2 β’ (π β (measuresβπ) β (π:πβΆ(0[,]+β) β§ (πββ ) = 0 β§ βπ¦ β π« π((π¦ βΌ Ο β§ Disj π₯ β π¦ π₯) β (πββͺ π¦) = Ξ£*π₯ β π¦(πβπ₯)))) |
5 | 4 | simp1d 1143 | 1 β’ (π β (measuresβπ) β π:πβΆ(0[,]+β)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 β c0 4323 π« cpw 4603 βͺ cuni 4909 Disj wdisj 5114 class class class wbr 5149 ran crn 5678 βΆwf 6540 βcfv 6544 (class class class)co 7409 Οcom 7855 βΌ cdom 8937 0cc0 11110 +βcpnf 11245 [,]cicc 13327 Ξ£*cesum 33025 sigAlgebracsiga 33106 measurescmeas 33193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-esum 33026 df-meas 33194 |
This theorem is referenced by: measfn 33202 measvxrge0 33203 meascnbl 33217 measres 33220 measdivcst 33222 measdivcstALTV 33223 |
Copyright terms: Public domain | W3C validator |