Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measfrge0 Structured version   Visualization version   GIF version

Theorem measfrge0 33201
Description: A measure is a function over its base to the positive extended reals. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
measfrge0 (𝑀 ∈ (measuresβ€˜π‘†) β†’ 𝑀:π‘†βŸΆ(0[,]+∞))

Proof of Theorem measfrge0
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 measbase 33195 . . . 4 (𝑀 ∈ (measuresβ€˜π‘†) β†’ 𝑆 ∈ βˆͺ ran sigAlgebra)
2 ismeas 33197 . . . 4 (𝑆 ∈ βˆͺ ran sigAlgebra β†’ (𝑀 ∈ (measuresβ€˜π‘†) ↔ (𝑀:π‘†βŸΆ(0[,]+∞) ∧ (π‘€β€˜βˆ…) = 0 ∧ βˆ€π‘¦ ∈ 𝒫 𝑆((𝑦 β‰Ό Ο‰ ∧ Disj π‘₯ ∈ 𝑦 π‘₯) β†’ (π‘€β€˜βˆͺ 𝑦) = Ξ£*π‘₯ ∈ 𝑦(π‘€β€˜π‘₯)))))
31, 2syl 17 . . 3 (𝑀 ∈ (measuresβ€˜π‘†) β†’ (𝑀 ∈ (measuresβ€˜π‘†) ↔ (𝑀:π‘†βŸΆ(0[,]+∞) ∧ (π‘€β€˜βˆ…) = 0 ∧ βˆ€π‘¦ ∈ 𝒫 𝑆((𝑦 β‰Ό Ο‰ ∧ Disj π‘₯ ∈ 𝑦 π‘₯) β†’ (π‘€β€˜βˆͺ 𝑦) = Ξ£*π‘₯ ∈ 𝑦(π‘€β€˜π‘₯)))))
43ibi 267 . 2 (𝑀 ∈ (measuresβ€˜π‘†) β†’ (𝑀:π‘†βŸΆ(0[,]+∞) ∧ (π‘€β€˜βˆ…) = 0 ∧ βˆ€π‘¦ ∈ 𝒫 𝑆((𝑦 β‰Ό Ο‰ ∧ Disj π‘₯ ∈ 𝑦 π‘₯) β†’ (π‘€β€˜βˆͺ 𝑦) = Ξ£*π‘₯ ∈ 𝑦(π‘€β€˜π‘₯))))
54simp1d 1143 1 (𝑀 ∈ (measuresβ€˜π‘†) β†’ 𝑀:π‘†βŸΆ(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆ…c0 4323  π’« cpw 4603  βˆͺ cuni 4909  Disj wdisj 5114   class class class wbr 5149  ran crn 5678  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  Ο‰com 7855   β‰Ό cdom 8937  0cc0 11110  +∞cpnf 11245  [,]cicc 13327  Ξ£*cesum 33025  sigAlgebracsiga 33106  measurescmeas 33193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-esum 33026  df-meas 33194
This theorem is referenced by:  measfn  33202  measvxrge0  33203  meascnbl  33217  measres  33220  measdivcst  33222  measdivcstALTV  33223
  Copyright terms: Public domain W3C validator