Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measfrge0 Structured version   Visualization version   GIF version

Theorem measfrge0 32071
Description: A measure is a function over its base to the positive extended reals. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
measfrge0 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))

Proof of Theorem measfrge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 measbase 32065 . . . 4 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
2 ismeas 32067 . . . 4 (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥)))))
31, 2syl 17 . . 3 (𝑀 ∈ (measures‘𝑆) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥)))))
43ibi 266 . 2 (𝑀 ∈ (measures‘𝑆) → (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥))))
54simp1d 1140 1 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  c0 4253  𝒫 cpw 4530   cuni 4836  Disj wdisj 5035   class class class wbr 5070  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  cdom 8689  0cc0 10802  +∞cpnf 10937  [,]cicc 13011  Σ*cesum 31895  sigAlgebracsiga 31976  measurescmeas 32063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-esum 31896  df-meas 32064
This theorem is referenced by:  measfn  32072  measvxrge0  32073  meascnbl  32087  measres  32090  measdivcst  32092  measdivcstALTV  32093
  Copyright terms: Public domain W3C validator