Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > measvxrge0 | Structured version Visualization version GIF version |
Description: The values of a measure are positive extended reals. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
Ref | Expression |
---|---|
measvxrge0 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | measfrge0 32113 | . 2 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) | |
2 | 1 | ffvelrnda 6948 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ‘cfv 6423 (class class class)co 7260 0cc0 10818 +∞cpnf 10953 [,]cicc 13027 measurescmeas 32105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-fv 6431 df-ov 7263 df-esum 31938 df-meas 32106 |
This theorem is referenced by: measge0 32117 measle0 32118 measxun2 32120 measun 32121 measvunilem 32122 measvuni 32124 measssd 32125 measunl 32126 measiun 32128 meascnbl 32129 measinb 32131 measdivcst 32134 measdivcstALTV 32135 sibfinima 32248 prob01 32322 probmeasb 32339 |
Copyright terms: Public domain | W3C validator |