| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measvxrge0 | Structured version Visualization version GIF version | ||
| Description: The values of a measure are positive extended reals. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
| Ref | Expression |
|---|---|
| measvxrge0 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | measfrge0 34237 | . 2 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) | |
| 2 | 1 | ffvelcdmda 7023 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 0cc0 11013 +∞cpnf 11150 [,]cicc 13250 measurescmeas 34229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-esum 34062 df-meas 34230 |
| This theorem is referenced by: measge0 34241 measle0 34242 measxun2 34244 measun 34245 measvunilem 34246 measvuni 34248 measssd 34249 measunl 34250 measiun 34252 meascnbl 34253 measinb 34255 measdivcst 34258 measdivcstALTV 34259 sibfinima 34373 prob01 34447 probmeasb 34464 |
| Copyright terms: Public domain | W3C validator |