Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvxrge0 Structured version   Visualization version   GIF version

Theorem measvxrge0 33501
Description: The values of a measure are positive extended reals. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
measvxrge0 ((𝑀 ∈ (measuresβ€˜π‘†) ∧ 𝐴 ∈ 𝑆) β†’ (π‘€β€˜π΄) ∈ (0[,]+∞))

Proof of Theorem measvxrge0
StepHypRef Expression
1 measfrge0 33499 . 2 (𝑀 ∈ (measuresβ€˜π‘†) β†’ 𝑀:π‘†βŸΆ(0[,]+∞))
21ffvelcdmda 7085 1 ((𝑀 ∈ (measuresβ€˜π‘†) ∧ 𝐴 ∈ 𝑆) β†’ (π‘€β€˜π΄) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∈ wcel 2104  β€˜cfv 6542  (class class class)co 7411  0cc0 11112  +∞cpnf 11249  [,]cicc 13331  measurescmeas 33491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-esum 33324  df-meas 33492
This theorem is referenced by:  measge0  33503  measle0  33504  measxun2  33506  measun  33507  measvunilem  33508  measvuni  33510  measssd  33511  measunl  33512  measiun  33514  meascnbl  33515  measinb  33517  measdivcst  33520  measdivcstALTV  33521  sibfinima  33636  prob01  33710  probmeasb  33727
  Copyright terms: Public domain W3C validator