Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvxrge0 Structured version   Visualization version   GIF version

Theorem measvxrge0 34239
Description: The values of a measure are positive extended reals. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
measvxrge0 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))

Proof of Theorem measvxrge0
StepHypRef Expression
1 measfrge0 34237 . 2 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))
21ffvelcdmda 7023 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  cfv 6486  (class class class)co 7352  0cc0 11013  +∞cpnf 11150  [,]cicc 13250  measurescmeas 34229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-esum 34062  df-meas 34230
This theorem is referenced by:  measge0  34241  measle0  34242  measxun2  34244  measun  34245  measvunilem  34246  measvuni  34248  measssd  34249  measunl  34250  measiun  34252  meascnbl  34253  measinb  34255  measdivcst  34258  measdivcstALTV  34259  sibfinima  34373  prob01  34447  probmeasb  34464
  Copyright terms: Public domain W3C validator