Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvxrge0 Structured version   Visualization version   GIF version

Theorem measvxrge0 34195
Description: The values of a measure are positive extended reals. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
measvxrge0 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))

Proof of Theorem measvxrge0
StepHypRef Expression
1 measfrge0 34193 . 2 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))
21ffvelcdmda 7056 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cfv 6511  (class class class)co 7387  0cc0 11068  +∞cpnf 11205  [,]cicc 13309  measurescmeas 34185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-esum 34018  df-meas 34186
This theorem is referenced by:  measge0  34197  measle0  34198  measxun2  34200  measun  34201  measvunilem  34202  measvuni  34204  measssd  34205  measunl  34206  measiun  34208  meascnbl  34209  measinb  34211  measdivcst  34214  measdivcstALTV  34215  sibfinima  34330  prob01  34404  probmeasb  34421
  Copyright terms: Public domain W3C validator