Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmf Structured version   Visualization version   GIF version

Theorem mgmhmf 45338
Description: A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmhmf.b 𝐵 = (Base‘𝑆)
mgmhmf.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
mgmhmf (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵𝐶)

Proof of Theorem mgmhmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmf.b . . 3 𝐵 = (Base‘𝑆)
2 mgmhmf.c . . 3 𝐶 = (Base‘𝑇)
3 eqid 2738 . . 3 (+g𝑆) = (+g𝑆)
4 eqid 2738 . . 3 (+g𝑇) = (+g𝑇)
51, 2, 3, 4ismgmhm 45337 . 2 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))))
6 simprl 768 . 2 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))) → 𝐹:𝐵𝐶)
75, 6sylbi 216 1 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Mgmcmgm 18324   MgmHom cmgmhm 45331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-mgmhm 45333
This theorem is referenced by:  mgmhmf1o  45341  resmgmhm  45352  resmgmhm2  45353  resmgmhm2b  45354  mgmhmco  45355  mgmhmima  45356  mgmhmeql  45357
  Copyright terms: Public domain W3C validator