Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmhmf | Structured version Visualization version GIF version |
Description: A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020.) |
Ref | Expression |
---|---|
mgmhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
mgmhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
Ref | Expression |
---|---|
mgmhmf | ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmhmf.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
2 | mgmhmf.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
3 | eqid 2738 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2738 | . . 3 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | 1, 2, 3, 4 | ismgmhm 45337 | . 2 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))))) |
6 | simprl 768 | . 2 ⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)))) → 𝐹:𝐵⟶𝐶) | |
7 | 5, 6 | sylbi 216 | 1 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Mgmcmgm 18324 MgmHom cmgmhm 45331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-mgmhm 45333 |
This theorem is referenced by: mgmhmf1o 45341 resmgmhm 45352 resmgmhm2 45353 resmgmhm2b 45354 mgmhmco 45355 mgmhmima 45356 mgmhmeql 45357 |
Copyright terms: Public domain | W3C validator |