| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgmhmf | Structured version Visualization version GIF version | ||
| Description: A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020.) |
| Ref | Expression |
|---|---|
| mgmhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
| mgmhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| mgmhmf | ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmhmf.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | mgmhmf.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
| 3 | eqid 2729 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2729 | . . 3 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | ismgmhm 18623 | . 2 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))))) |
| 6 | simprl 770 | . 2 ⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)))) → 𝐹:𝐵⟶𝐶) | |
| 7 | 5, 6 | sylbi 217 | 1 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Mgmcmgm 18565 MgmHom cmgmhm 18617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-mgmhm 18619 |
| This theorem is referenced by: mgmhmf1o 18627 resmgmhm 18638 resmgmhm2 18639 resmgmhm2b 18640 mgmhmco 18641 mgmhmima 18642 mgmhmeql 18643 |
| Copyright terms: Public domain | W3C validator |