MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmhmf Structured version   Visualization version   GIF version

Theorem mgmhmf 18735
Description: A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmhmf.b 𝐵 = (Base‘𝑆)
mgmhmf.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
mgmhmf (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵𝐶)

Proof of Theorem mgmhmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmf.b . . 3 𝐵 = (Base‘𝑆)
2 mgmhmf.c . . 3 𝐶 = (Base‘𝑇)
3 eqid 2740 . . 3 (+g𝑆) = (+g𝑆)
4 eqid 2740 . . 3 (+g𝑇) = (+g𝑇)
51, 2, 3, 4ismgmhm 18734 . 2 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))))
6 simprl 770 . 2 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))) → 𝐹:𝐵𝐶)
75, 6sylbi 217 1 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Mgmcmgm 18676   MgmHom cmgmhm 18728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-mgmhm 18730
This theorem is referenced by:  mgmhmf1o  18738  resmgmhm  18749  resmgmhm2  18750  resmgmhm2b  18751  mgmhmco  18752  mgmhmima  18753  mgmhmeql  18754
  Copyright terms: Public domain W3C validator