Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmhmf | Structured version Visualization version GIF version |
Description: A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020.) |
Ref | Expression |
---|---|
mgmhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
mgmhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
Ref | Expression |
---|---|
mgmhmf | ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmhmf.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
2 | mgmhmf.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
3 | eqid 2738 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2738 | . . 3 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | 1, 2, 3, 4 | ismgmhm 44855 | . 2 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))))) |
6 | simprl 771 | . 2 ⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)))) → 𝐹:𝐵⟶𝐶) | |
7 | 5, 6 | sylbi 220 | 1 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∀wral 3053 ⟶wf 6329 ‘cfv 6333 (class class class)co 7164 Basecbs 16579 +gcplusg 16661 Mgmcmgm 17959 MgmHom cmgmhm 44849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-fv 6341 df-ov 7167 df-oprab 7168 df-mpo 7169 df-map 8432 df-mgmhm 44851 |
This theorem is referenced by: mgmhmf1o 44859 resmgmhm 44870 resmgmhm2 44871 resmgmhm2b 44872 mgmhmco 44873 mgmhmima 44874 mgmhmeql 44875 |
Copyright terms: Public domain | W3C validator |