MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmhmf Structured version   Visualization version   GIF version

Theorem mgmhmf 18631
Description: A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmhmf.b 𝐵 = (Base‘𝑆)
mgmhmf.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
mgmhmf (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵𝐶)

Proof of Theorem mgmhmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmf.b . . 3 𝐵 = (Base‘𝑆)
2 mgmhmf.c . . 3 𝐶 = (Base‘𝑇)
3 eqid 2730 . . 3 (+g𝑆) = (+g𝑆)
4 eqid 2730 . . 3 (+g𝑇) = (+g𝑇)
51, 2, 3, 4ismgmhm 18630 . 2 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))))
6 simprl 770 . 2 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))) → 𝐹:𝐵𝐶)
75, 6sylbi 217 1 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Mgmcmgm 18572   MgmHom cmgmhm 18624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-mgmhm 18626
This theorem is referenced by:  mgmhmf1o  18634  resmgmhm  18645  resmgmhm2  18646  resmgmhm2b  18647  mgmhmco  18648  mgmhmima  18649  mgmhmeql  18650
  Copyright terms: Public domain W3C validator