Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plusfreseq Structured version   Visualization version   GIF version

Theorem plusfreseq 47027
Description: If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
plusfreseq.1 𝐵 = (Base‘𝑀)
plusfreseq.2 + = (+g𝑀)
plusfreseq.3 = (+𝑓𝑀)
Assertion
Ref Expression
plusfreseq (∅ ∉ ran → ( + ↾ (𝐵 × 𝐵)) = )

Proof of Theorem plusfreseq
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusfreseq.1 . . . . 5 𝐵 = (Base‘𝑀)
2 plusfreseq.3 . . . . 5 = (+𝑓𝑀)
31, 2plusffn 18572 . . . 4 Fn (𝐵 × 𝐵)
4 fnfun 6639 . . . 4 ( Fn (𝐵 × 𝐵) → Fun )
53, 4ax-mp 5 . . 3 Fun
65a1i 11 . 2 (∅ ∉ ran → Fun )
7 id 22 . 2 (∅ ∉ ran → ∅ ∉ ran )
8 plusfreseq.2 . . . . . . 7 + = (+g𝑀)
91, 8, 2plusfval 18570 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦) = (𝑥 + 𝑦))
109eqcomd 2730 . . . . 5 ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑥 𝑦))
1110rgen2 3189 . . . 4 𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑥 𝑦)
1211a1i 11 . . 3 (∅ ∉ ran → ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑥 𝑦))
13 fveq2 6881 . . . . . 6 (𝑝 = ⟨𝑥, 𝑦⟩ → ( +𝑝) = ( + ‘⟨𝑥, 𝑦⟩))
14 df-ov 7404 . . . . . 6 (𝑥 + 𝑦) = ( + ‘⟨𝑥, 𝑦⟩)
1513, 14eqtr4di 2782 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → ( +𝑝) = (𝑥 + 𝑦))
16 fveq2 6881 . . . . . 6 (𝑝 = ⟨𝑥, 𝑦⟩ → ( 𝑝) = ( ‘⟨𝑥, 𝑦⟩))
17 df-ov 7404 . . . . . 6 (𝑥 𝑦) = ( ‘⟨𝑥, 𝑦⟩)
1816, 17eqtr4di 2782 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → ( 𝑝) = (𝑥 𝑦))
1915, 18eqeq12d 2740 . . . 4 (𝑝 = ⟨𝑥, 𝑦⟩ → (( +𝑝) = ( 𝑝) ↔ (𝑥 + 𝑦) = (𝑥 𝑦)))
2019ralxp 5831 . . 3 (∀𝑝 ∈ (𝐵 × 𝐵)( +𝑝) = ( 𝑝) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑥 𝑦))
2112, 20sylibr 233 . 2 (∅ ∉ ran → ∀𝑝 ∈ (𝐵 × 𝐵)( +𝑝) = ( 𝑝))
22 fndm 6642 . . . . 5 ( Fn (𝐵 × 𝐵) → dom = (𝐵 × 𝐵))
2322eqcomd 2730 . . . 4 ( Fn (𝐵 × 𝐵) → (𝐵 × 𝐵) = dom )
243, 23ax-mp 5 . . 3 (𝐵 × 𝐵) = dom
2524fveqressseq 7071 . 2 ((Fun ∧ ∅ ∉ ran ∧ ∀𝑝 ∈ (𝐵 × 𝐵)( +𝑝) = ( 𝑝)) → ( + ↾ (𝐵 × 𝐵)) = )
266, 7, 21, 25syl3anc 1368 1 (∅ ∉ ran → ( + ↾ (𝐵 × 𝐵)) = )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wnel 3038  wral 3053  c0 4314  cop 4626   × cxp 5664  dom cdm 5666  ran crn 5667  cres 5668  Fun wfun 6527   Fn wfn 6528  cfv 6533  (class class class)co 7401  Basecbs 17143  +gcplusg 17196  +𝑓cplusf 18560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-plusf 18562
This theorem is referenced by:  mgmplusfreseq  47028
  Copyright terms: Public domain W3C validator