| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > plusfreseq | Structured version Visualization version GIF version | ||
| Description: If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| plusfreseq.1 | ⊢ 𝐵 = (Base‘𝑀) |
| plusfreseq.2 | ⊢ + = (+g‘𝑀) |
| plusfreseq.3 | ⊢ ⨣ = (+𝑓‘𝑀) |
| Ref | Expression |
|---|---|
| plusfreseq | ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusfreseq.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | plusfreseq.3 | . . . . 5 ⊢ ⨣ = (+𝑓‘𝑀) | |
| 3 | 1, 2 | plusffn 18583 | . . . 4 ⊢ ⨣ Fn (𝐵 × 𝐵) |
| 4 | fnfun 6621 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → Fun ⨣ ) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ Fun ⨣ |
| 6 | 5 | a1i 11 | . 2 ⊢ (∅ ∉ ran ⨣ → Fun ⨣ ) |
| 7 | id 22 | . 2 ⊢ (∅ ∉ ran ⨣ → ∅ ∉ ran ⨣ ) | |
| 8 | plusfreseq.2 | . . . . . . 7 ⊢ + = (+g‘𝑀) | |
| 9 | 1, 8, 2 | plusfval 18581 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ⨣ 𝑦) = (𝑥 + 𝑦)) |
| 10 | 9 | eqcomd 2736 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
| 11 | 10 | rgen2 3178 | . . . 4 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦) |
| 12 | 11 | a1i 11 | . . 3 ⊢ (∅ ∉ ran ⨣ → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
| 13 | fveq2 6861 | . . . . . 6 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( + ‘𝑝) = ( + ‘〈𝑥, 𝑦〉)) | |
| 14 | df-ov 7393 | . . . . . 6 ⊢ (𝑥 + 𝑦) = ( + ‘〈𝑥, 𝑦〉) | |
| 15 | 13, 14 | eqtr4di 2783 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( + ‘𝑝) = (𝑥 + 𝑦)) |
| 16 | fveq2 6861 | . . . . . 6 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( ⨣ ‘𝑝) = ( ⨣ ‘〈𝑥, 𝑦〉)) | |
| 17 | df-ov 7393 | . . . . . 6 ⊢ (𝑥 ⨣ 𝑦) = ( ⨣ ‘〈𝑥, 𝑦〉) | |
| 18 | 16, 17 | eqtr4di 2783 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( ⨣ ‘𝑝) = (𝑥 ⨣ 𝑦)) |
| 19 | 15, 18 | eqeq12d 2746 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (( + ‘𝑝) = ( ⨣ ‘𝑝) ↔ (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦))) |
| 20 | 19 | ralxp 5808 | . . 3 ⊢ (∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
| 21 | 12, 20 | sylibr 234 | . 2 ⊢ (∅ ∉ ran ⨣ → ∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝)) |
| 22 | fndm 6624 | . . . . 5 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → dom ⨣ = (𝐵 × 𝐵)) | |
| 23 | 22 | eqcomd 2736 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → (𝐵 × 𝐵) = dom ⨣ ) |
| 24 | 3, 23 | ax-mp 5 | . . 3 ⊢ (𝐵 × 𝐵) = dom ⨣ |
| 25 | 24 | fveqressseq 7054 | . 2 ⊢ ((Fun ⨣ ∧ ∅ ∉ ran ⨣ ∧ ∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝)) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| 26 | 6, 7, 21, 25 | syl3anc 1373 | 1 ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 ∀wral 3045 ∅c0 4299 〈cop 4598 × cxp 5639 dom cdm 5641 ran crn 5642 ↾ cres 5643 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 +𝑓cplusf 18571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-plusf 18573 |
| This theorem is referenced by: mgmplusfreseq 48157 |
| Copyright terms: Public domain | W3C validator |