![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > plusfreseq | Structured version Visualization version GIF version |
Description: If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
plusfreseq.1 | ⊢ 𝐵 = (Base‘𝑀) |
plusfreseq.2 | ⊢ + = (+g‘𝑀) |
plusfreseq.3 | ⊢ ⨣ = (+𝑓‘𝑀) |
Ref | Expression |
---|---|
plusfreseq | ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusfreseq.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | plusfreseq.3 | . . . . 5 ⊢ ⨣ = (+𝑓‘𝑀) | |
3 | 1, 2 | plusffn 18507 | . . . 4 ⊢ ⨣ Fn (𝐵 × 𝐵) |
4 | fnfun 6603 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → Fun ⨣ ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ Fun ⨣ |
6 | 5 | a1i 11 | . 2 ⊢ (∅ ∉ ran ⨣ → Fun ⨣ ) |
7 | id 22 | . 2 ⊢ (∅ ∉ ran ⨣ → ∅ ∉ ran ⨣ ) | |
8 | plusfreseq.2 | . . . . . . 7 ⊢ + = (+g‘𝑀) | |
9 | 1, 8, 2 | plusfval 18505 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ⨣ 𝑦) = (𝑥 + 𝑦)) |
10 | 9 | eqcomd 2743 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
11 | 10 | rgen2 3195 | . . . 4 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦) |
12 | 11 | a1i 11 | . . 3 ⊢ (∅ ∉ ran ⨣ → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
13 | fveq2 6843 | . . . . . 6 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → ( + ‘𝑝) = ( + ‘⟨𝑥, 𝑦⟩)) | |
14 | df-ov 7361 | . . . . . 6 ⊢ (𝑥 + 𝑦) = ( + ‘⟨𝑥, 𝑦⟩) | |
15 | 13, 14 | eqtr4di 2795 | . . . . 5 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → ( + ‘𝑝) = (𝑥 + 𝑦)) |
16 | fveq2 6843 | . . . . . 6 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → ( ⨣ ‘𝑝) = ( ⨣ ‘⟨𝑥, 𝑦⟩)) | |
17 | df-ov 7361 | . . . . . 6 ⊢ (𝑥 ⨣ 𝑦) = ( ⨣ ‘⟨𝑥, 𝑦⟩) | |
18 | 16, 17 | eqtr4di 2795 | . . . . 5 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → ( ⨣ ‘𝑝) = (𝑥 ⨣ 𝑦)) |
19 | 15, 18 | eqeq12d 2753 | . . . 4 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → (( + ‘𝑝) = ( ⨣ ‘𝑝) ↔ (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦))) |
20 | 19 | ralxp 5798 | . . 3 ⊢ (∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
21 | 12, 20 | sylibr 233 | . 2 ⊢ (∅ ∉ ran ⨣ → ∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝)) |
22 | fndm 6606 | . . . . 5 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → dom ⨣ = (𝐵 × 𝐵)) | |
23 | 22 | eqcomd 2743 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → (𝐵 × 𝐵) = dom ⨣ ) |
24 | 3, 23 | ax-mp 5 | . . 3 ⊢ (𝐵 × 𝐵) = dom ⨣ |
25 | 24 | fveqressseq 7031 | . 2 ⊢ ((Fun ⨣ ∧ ∅ ∉ ran ⨣ ∧ ∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝)) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
26 | 6, 7, 21, 25 | syl3anc 1372 | 1 ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∉ wnel 3050 ∀wral 3065 ∅c0 4283 ⟨cop 4593 × cxp 5632 dom cdm 5634 ran crn 5635 ↾ cres 5636 Fun wfun 6491 Fn wfn 6492 ‘cfv 6497 (class class class)co 7358 Basecbs 17084 +gcplusg 17134 +𝑓cplusf 18495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-plusf 18497 |
This theorem is referenced by: mgmplusfreseq 46074 |
Copyright terms: Public domain | W3C validator |