| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > plusfreseq | Structured version Visualization version GIF version | ||
| Description: If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| plusfreseq.1 | ⊢ 𝐵 = (Base‘𝑀) |
| plusfreseq.2 | ⊢ + = (+g‘𝑀) |
| plusfreseq.3 | ⊢ ⨣ = (+𝑓‘𝑀) |
| Ref | Expression |
|---|---|
| plusfreseq | ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusfreseq.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | plusfreseq.3 | . . . . 5 ⊢ ⨣ = (+𝑓‘𝑀) | |
| 3 | 1, 2 | plusffn 18576 | . . . 4 ⊢ ⨣ Fn (𝐵 × 𝐵) |
| 4 | fnfun 6618 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → Fun ⨣ ) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ Fun ⨣ |
| 6 | 5 | a1i 11 | . 2 ⊢ (∅ ∉ ran ⨣ → Fun ⨣ ) |
| 7 | id 22 | . 2 ⊢ (∅ ∉ ran ⨣ → ∅ ∉ ran ⨣ ) | |
| 8 | plusfreseq.2 | . . . . . . 7 ⊢ + = (+g‘𝑀) | |
| 9 | 1, 8, 2 | plusfval 18574 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ⨣ 𝑦) = (𝑥 + 𝑦)) |
| 10 | 9 | eqcomd 2735 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
| 11 | 10 | rgen2 3177 | . . . 4 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦) |
| 12 | 11 | a1i 11 | . . 3 ⊢ (∅ ∉ ran ⨣ → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
| 13 | fveq2 6858 | . . . . . 6 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( + ‘𝑝) = ( + ‘〈𝑥, 𝑦〉)) | |
| 14 | df-ov 7390 | . . . . . 6 ⊢ (𝑥 + 𝑦) = ( + ‘〈𝑥, 𝑦〉) | |
| 15 | 13, 14 | eqtr4di 2782 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( + ‘𝑝) = (𝑥 + 𝑦)) |
| 16 | fveq2 6858 | . . . . . 6 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( ⨣ ‘𝑝) = ( ⨣ ‘〈𝑥, 𝑦〉)) | |
| 17 | df-ov 7390 | . . . . . 6 ⊢ (𝑥 ⨣ 𝑦) = ( ⨣ ‘〈𝑥, 𝑦〉) | |
| 18 | 16, 17 | eqtr4di 2782 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( ⨣ ‘𝑝) = (𝑥 ⨣ 𝑦)) |
| 19 | 15, 18 | eqeq12d 2745 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (( + ‘𝑝) = ( ⨣ ‘𝑝) ↔ (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦))) |
| 20 | 19 | ralxp 5805 | . . 3 ⊢ (∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
| 21 | 12, 20 | sylibr 234 | . 2 ⊢ (∅ ∉ ran ⨣ → ∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝)) |
| 22 | fndm 6621 | . . . . 5 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → dom ⨣ = (𝐵 × 𝐵)) | |
| 23 | 22 | eqcomd 2735 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → (𝐵 × 𝐵) = dom ⨣ ) |
| 24 | 3, 23 | ax-mp 5 | . . 3 ⊢ (𝐵 × 𝐵) = dom ⨣ |
| 25 | 24 | fveqressseq 7051 | . 2 ⊢ ((Fun ⨣ ∧ ∅ ∉ ran ⨣ ∧ ∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝)) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| 26 | 6, 7, 21, 25 | syl3anc 1373 | 1 ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 ∅c0 4296 〈cop 4595 × cxp 5636 dom cdm 5638 ran crn 5639 ↾ cres 5640 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 +𝑓cplusf 18564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-plusf 18566 |
| This theorem is referenced by: mgmplusfreseq 48153 |
| Copyright terms: Public domain | W3C validator |