Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > plusfreseq | Structured version Visualization version GIF version |
Description: If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
plusfreseq.1 | ⊢ 𝐵 = (Base‘𝑀) |
plusfreseq.2 | ⊢ + = (+g‘𝑀) |
plusfreseq.3 | ⊢ ⨣ = (+𝑓‘𝑀) |
Ref | Expression |
---|---|
plusfreseq | ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusfreseq.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | plusfreseq.3 | . . . . 5 ⊢ ⨣ = (+𝑓‘𝑀) | |
3 | 1, 2 | plusffn 18333 | . . . 4 ⊢ ⨣ Fn (𝐵 × 𝐵) |
4 | fnfun 6531 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → Fun ⨣ ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ Fun ⨣ |
6 | 5 | a1i 11 | . 2 ⊢ (∅ ∉ ran ⨣ → Fun ⨣ ) |
7 | id 22 | . 2 ⊢ (∅ ∉ ran ⨣ → ∅ ∉ ran ⨣ ) | |
8 | plusfreseq.2 | . . . . . . 7 ⊢ + = (+g‘𝑀) | |
9 | 1, 8, 2 | plusfval 18331 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ⨣ 𝑦) = (𝑥 + 𝑦)) |
10 | 9 | eqcomd 2746 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
11 | 10 | rgen2 3129 | . . . 4 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦) |
12 | 11 | a1i 11 | . . 3 ⊢ (∅ ∉ ran ⨣ → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
13 | fveq2 6771 | . . . . . 6 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( + ‘𝑝) = ( + ‘〈𝑥, 𝑦〉)) | |
14 | df-ov 7274 | . . . . . 6 ⊢ (𝑥 + 𝑦) = ( + ‘〈𝑥, 𝑦〉) | |
15 | 13, 14 | eqtr4di 2798 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( + ‘𝑝) = (𝑥 + 𝑦)) |
16 | fveq2 6771 | . . . . . 6 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( ⨣ ‘𝑝) = ( ⨣ ‘〈𝑥, 𝑦〉)) | |
17 | df-ov 7274 | . . . . . 6 ⊢ (𝑥 ⨣ 𝑦) = ( ⨣ ‘〈𝑥, 𝑦〉) | |
18 | 16, 17 | eqtr4di 2798 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → ( ⨣ ‘𝑝) = (𝑥 ⨣ 𝑦)) |
19 | 15, 18 | eqeq12d 2756 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (( + ‘𝑝) = ( ⨣ ‘𝑝) ↔ (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦))) |
20 | 19 | ralxp 5749 | . . 3 ⊢ (∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
21 | 12, 20 | sylibr 233 | . 2 ⊢ (∅ ∉ ran ⨣ → ∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝)) |
22 | fndm 6534 | . . . . 5 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → dom ⨣ = (𝐵 × 𝐵)) | |
23 | 22 | eqcomd 2746 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → (𝐵 × 𝐵) = dom ⨣ ) |
24 | 3, 23 | ax-mp 5 | . . 3 ⊢ (𝐵 × 𝐵) = dom ⨣ |
25 | 24 | fveqressseq 6954 | . 2 ⊢ ((Fun ⨣ ∧ ∅ ∉ ran ⨣ ∧ ∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝)) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
26 | 6, 7, 21, 25 | syl3anc 1370 | 1 ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∉ wnel 3051 ∀wral 3066 ∅c0 4262 〈cop 4573 × cxp 5588 dom cdm 5590 ran crn 5591 ↾ cres 5592 Fun wfun 6426 Fn wfn 6427 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 +gcplusg 16960 +𝑓cplusf 18321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-plusf 18323 |
This theorem is referenced by: mgmplusfreseq 45296 |
Copyright terms: Public domain | W3C validator |