Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plusfreseq Structured version   Visualization version   GIF version

Theorem plusfreseq 48194
Description: If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
plusfreseq.1 𝐵 = (Base‘𝑀)
plusfreseq.2 + = (+g𝑀)
plusfreseq.3 = (+𝑓𝑀)
Assertion
Ref Expression
plusfreseq (∅ ∉ ran → ( + ↾ (𝐵 × 𝐵)) = )

Proof of Theorem plusfreseq
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusfreseq.1 . . . . 5 𝐵 = (Base‘𝑀)
2 plusfreseq.3 . . . . 5 = (+𝑓𝑀)
31, 2plusffn 18554 . . . 4 Fn (𝐵 × 𝐵)
4 fnfun 6581 . . . 4 ( Fn (𝐵 × 𝐵) → Fun )
53, 4ax-mp 5 . . 3 Fun
65a1i 11 . 2 (∅ ∉ ran → Fun )
7 id 22 . 2 (∅ ∉ ran → ∅ ∉ ran )
8 plusfreseq.2 . . . . . . 7 + = (+g𝑀)
91, 8, 2plusfval 18552 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦) = (𝑥 + 𝑦))
109eqcomd 2737 . . . . 5 ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑥 𝑦))
1110rgen2 3172 . . . 4 𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑥 𝑦)
1211a1i 11 . . 3 (∅ ∉ ran → ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑥 𝑦))
13 fveq2 6822 . . . . . 6 (𝑝 = ⟨𝑥, 𝑦⟩ → ( +𝑝) = ( + ‘⟨𝑥, 𝑦⟩))
14 df-ov 7349 . . . . . 6 (𝑥 + 𝑦) = ( + ‘⟨𝑥, 𝑦⟩)
1513, 14eqtr4di 2784 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → ( +𝑝) = (𝑥 + 𝑦))
16 fveq2 6822 . . . . . 6 (𝑝 = ⟨𝑥, 𝑦⟩ → ( 𝑝) = ( ‘⟨𝑥, 𝑦⟩))
17 df-ov 7349 . . . . . 6 (𝑥 𝑦) = ( ‘⟨𝑥, 𝑦⟩)
1816, 17eqtr4di 2784 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → ( 𝑝) = (𝑥 𝑦))
1915, 18eqeq12d 2747 . . . 4 (𝑝 = ⟨𝑥, 𝑦⟩ → (( +𝑝) = ( 𝑝) ↔ (𝑥 + 𝑦) = (𝑥 𝑦)))
2019ralxp 5781 . . 3 (∀𝑝 ∈ (𝐵 × 𝐵)( +𝑝) = ( 𝑝) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑥 𝑦))
2112, 20sylibr 234 . 2 (∅ ∉ ran → ∀𝑝 ∈ (𝐵 × 𝐵)( +𝑝) = ( 𝑝))
22 fndm 6584 . . . . 5 ( Fn (𝐵 × 𝐵) → dom = (𝐵 × 𝐵))
2322eqcomd 2737 . . . 4 ( Fn (𝐵 × 𝐵) → (𝐵 × 𝐵) = dom )
243, 23ax-mp 5 . . 3 (𝐵 × 𝐵) = dom
2524fveqressseq 7012 . 2 ((Fun ∧ ∅ ∉ ran ∧ ∀𝑝 ∈ (𝐵 × 𝐵)( +𝑝) = ( 𝑝)) → ( + ↾ (𝐵 × 𝐵)) = )
266, 7, 21, 25syl3anc 1373 1 (∅ ∉ ran → ( + ↾ (𝐵 × 𝐵)) = )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wnel 3032  wral 3047  c0 4283  cop 4582   × cxp 5614  dom cdm 5616  ran crn 5617  cres 5618  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  +𝑓cplusf 18542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-plusf 18544
This theorem is referenced by:  mgmplusfreseq  48195
  Copyright terms: Public domain W3C validator