![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > plusfreseq | Structured version Visualization version GIF version |
Description: If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
plusfreseq.1 | ⊢ 𝐵 = (Base‘𝑀) |
plusfreseq.2 | ⊢ + = (+g‘𝑀) |
plusfreseq.3 | ⊢ ⨣ = (+𝑓‘𝑀) |
Ref | Expression |
---|---|
plusfreseq | ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusfreseq.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | plusfreseq.3 | . . . . 5 ⊢ ⨣ = (+𝑓‘𝑀) | |
3 | 1, 2 | plusffn 18567 | . . . 4 ⊢ ⨣ Fn (𝐵 × 𝐵) |
4 | fnfun 6647 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → Fun ⨣ ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ Fun ⨣ |
6 | 5 | a1i 11 | . 2 ⊢ (∅ ∉ ran ⨣ → Fun ⨣ ) |
7 | id 22 | . 2 ⊢ (∅ ∉ ran ⨣ → ∅ ∉ ran ⨣ ) | |
8 | plusfreseq.2 | . . . . . . 7 ⊢ + = (+g‘𝑀) | |
9 | 1, 8, 2 | plusfval 18565 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ⨣ 𝑦) = (𝑥 + 𝑦)) |
10 | 9 | eqcomd 2739 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
11 | 10 | rgen2 3198 | . . . 4 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦) |
12 | 11 | a1i 11 | . . 3 ⊢ (∅ ∉ ran ⨣ → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
13 | fveq2 6889 | . . . . . 6 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → ( + ‘𝑝) = ( + ‘⟨𝑥, 𝑦⟩)) | |
14 | df-ov 7409 | . . . . . 6 ⊢ (𝑥 + 𝑦) = ( + ‘⟨𝑥, 𝑦⟩) | |
15 | 13, 14 | eqtr4di 2791 | . . . . 5 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → ( + ‘𝑝) = (𝑥 + 𝑦)) |
16 | fveq2 6889 | . . . . . 6 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → ( ⨣ ‘𝑝) = ( ⨣ ‘⟨𝑥, 𝑦⟩)) | |
17 | df-ov 7409 | . . . . . 6 ⊢ (𝑥 ⨣ 𝑦) = ( ⨣ ‘⟨𝑥, 𝑦⟩) | |
18 | 16, 17 | eqtr4di 2791 | . . . . 5 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → ( ⨣ ‘𝑝) = (𝑥 ⨣ 𝑦)) |
19 | 15, 18 | eqeq12d 2749 | . . . 4 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → (( + ‘𝑝) = ( ⨣ ‘𝑝) ↔ (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦))) |
20 | 19 | ralxp 5840 | . . 3 ⊢ (∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑥 ⨣ 𝑦)) |
21 | 12, 20 | sylibr 233 | . 2 ⊢ (∅ ∉ ran ⨣ → ∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝)) |
22 | fndm 6650 | . . . . 5 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → dom ⨣ = (𝐵 × 𝐵)) | |
23 | 22 | eqcomd 2739 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) → (𝐵 × 𝐵) = dom ⨣ ) |
24 | 3, 23 | ax-mp 5 | . . 3 ⊢ (𝐵 × 𝐵) = dom ⨣ |
25 | 24 | fveqressseq 7079 | . 2 ⊢ ((Fun ⨣ ∧ ∅ ∉ ran ⨣ ∧ ∀𝑝 ∈ (𝐵 × 𝐵)( + ‘𝑝) = ( ⨣ ‘𝑝)) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
26 | 6, 7, 21, 25 | syl3anc 1372 | 1 ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∉ wnel 3047 ∀wral 3062 ∅c0 4322 ⟨cop 4634 × cxp 5674 dom cdm 5676 ran crn 5677 ↾ cres 5678 Fun wfun 6535 Fn wfn 6536 ‘cfv 6541 (class class class)co 7406 Basecbs 17141 +gcplusg 17194 +𝑓cplusf 18555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-1st 7972 df-2nd 7973 df-plusf 18557 |
This theorem is referenced by: mgmplusfreseq 46530 |
Copyright terms: Public domain | W3C validator |