Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plusfreseq Structured version   Visualization version   GIF version

Theorem plusfreseq 48008
Description: If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
plusfreseq.1 𝐵 = (Base‘𝑀)
plusfreseq.2 + = (+g𝑀)
plusfreseq.3 = (+𝑓𝑀)
Assertion
Ref Expression
plusfreseq (∅ ∉ ran → ( + ↾ (𝐵 × 𝐵)) = )

Proof of Theorem plusfreseq
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusfreseq.1 . . . . 5 𝐵 = (Base‘𝑀)
2 plusfreseq.3 . . . . 5 = (+𝑓𝑀)
31, 2plusffn 18675 . . . 4 Fn (𝐵 × 𝐵)
4 fnfun 6669 . . . 4 ( Fn (𝐵 × 𝐵) → Fun )
53, 4ax-mp 5 . . 3 Fun
65a1i 11 . 2 (∅ ∉ ran → Fun )
7 id 22 . 2 (∅ ∉ ran → ∅ ∉ ran )
8 plusfreseq.2 . . . . . . 7 + = (+g𝑀)
91, 8, 2plusfval 18673 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦) = (𝑥 + 𝑦))
109eqcomd 2741 . . . . 5 ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑥 𝑦))
1110rgen2 3197 . . . 4 𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑥 𝑦)
1211a1i 11 . . 3 (∅ ∉ ran → ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑥 𝑦))
13 fveq2 6907 . . . . . 6 (𝑝 = ⟨𝑥, 𝑦⟩ → ( +𝑝) = ( + ‘⟨𝑥, 𝑦⟩))
14 df-ov 7434 . . . . . 6 (𝑥 + 𝑦) = ( + ‘⟨𝑥, 𝑦⟩)
1513, 14eqtr4di 2793 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → ( +𝑝) = (𝑥 + 𝑦))
16 fveq2 6907 . . . . . 6 (𝑝 = ⟨𝑥, 𝑦⟩ → ( 𝑝) = ( ‘⟨𝑥, 𝑦⟩))
17 df-ov 7434 . . . . . 6 (𝑥 𝑦) = ( ‘⟨𝑥, 𝑦⟩)
1816, 17eqtr4di 2793 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → ( 𝑝) = (𝑥 𝑦))
1915, 18eqeq12d 2751 . . . 4 (𝑝 = ⟨𝑥, 𝑦⟩ → (( +𝑝) = ( 𝑝) ↔ (𝑥 + 𝑦) = (𝑥 𝑦)))
2019ralxp 5855 . . 3 (∀𝑝 ∈ (𝐵 × 𝐵)( +𝑝) = ( 𝑝) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑥 𝑦))
2112, 20sylibr 234 . 2 (∅ ∉ ran → ∀𝑝 ∈ (𝐵 × 𝐵)( +𝑝) = ( 𝑝))
22 fndm 6672 . . . . 5 ( Fn (𝐵 × 𝐵) → dom = (𝐵 × 𝐵))
2322eqcomd 2741 . . . 4 ( Fn (𝐵 × 𝐵) → (𝐵 × 𝐵) = dom )
243, 23ax-mp 5 . . 3 (𝐵 × 𝐵) = dom
2524fveqressseq 7099 . 2 ((Fun ∧ ∅ ∉ ran ∧ ∀𝑝 ∈ (𝐵 × 𝐵)( +𝑝) = ( 𝑝)) → ( + ↾ (𝐵 × 𝐵)) = )
266, 7, 21, 25syl3anc 1370 1 (∅ ∉ ran → ( + ↾ (𝐵 × 𝐵)) = )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wnel 3044  wral 3059  c0 4339  cop 4637   × cxp 5687  dom cdm 5689  ran crn 5690  cres 5691  Fun wfun 6557   Fn wfn 6558  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  +𝑓cplusf 18663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-plusf 18665
This theorem is referenced by:  mgmplusfreseq  48009
  Copyright terms: Public domain W3C validator