![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsplusgcl | Structured version Visualization version GIF version |
Description: Structure product pointwise sums are closed when the factors are monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsplusgcl.y | β’ π = (πXsπ ) |
prdsplusgcl.b | β’ π΅ = (Baseβπ) |
prdsplusgcl.p | β’ + = (+gβπ) |
prdsplusgcl.s | β’ (π β π β π) |
prdsplusgcl.i | β’ (π β πΌ β π) |
prdsplusgcl.r | β’ (π β π :πΌβΆMnd) |
prdsplusgcl.f | β’ (π β πΉ β π΅) |
prdsplusgcl.g | β’ (π β πΊ β π΅) |
Ref | Expression |
---|---|
prdsplusgcl | β’ (π β (πΉ + πΊ) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsplusgcl.y | . . 3 β’ π = (πXsπ ) | |
2 | prdsplusgcl.b | . . 3 β’ π΅ = (Baseβπ) | |
3 | prdsplusgcl.s | . . 3 β’ (π β π β π) | |
4 | prdsplusgcl.i | . . 3 β’ (π β πΌ β π) | |
5 | prdsplusgcl.r | . . . 4 β’ (π β π :πΌβΆMnd) | |
6 | 5 | ffnd 6717 | . . 3 β’ (π β π Fn πΌ) |
7 | prdsplusgcl.f | . . 3 β’ (π β πΉ β π΅) | |
8 | prdsplusgcl.g | . . 3 β’ (π β πΊ β π΅) | |
9 | prdsplusgcl.p | . . 3 β’ + = (+gβπ) | |
10 | 1, 2, 3, 4, 6, 7, 8, 9 | prdsplusgval 17452 | . 2 β’ (π β (πΉ + πΊ) = (π₯ β πΌ β¦ ((πΉβπ₯)(+gβ(π βπ₯))(πΊβπ₯)))) |
11 | 5 | ffvelcdmda 7088 | . . . . 5 β’ ((π β§ π₯ β πΌ) β (π βπ₯) β Mnd) |
12 | 3 | adantr 479 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β π β π) |
13 | 4 | adantr 479 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β πΌ β π) |
14 | 6 | adantr 479 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β π Fn πΌ) |
15 | 7 | adantr 479 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β πΉ β π΅) |
16 | simpr 483 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β π₯ β πΌ) | |
17 | 1, 2, 12, 13, 14, 15, 16 | prdsbasprj 17451 | . . . . 5 β’ ((π β§ π₯ β πΌ) β (πΉβπ₯) β (Baseβ(π βπ₯))) |
18 | 8 | adantr 479 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β πΊ β π΅) |
19 | 1, 2, 12, 13, 14, 18, 16 | prdsbasprj 17451 | . . . . 5 β’ ((π β§ π₯ β πΌ) β (πΊβπ₯) β (Baseβ(π βπ₯))) |
20 | eqid 2725 | . . . . . 6 β’ (Baseβ(π βπ₯)) = (Baseβ(π βπ₯)) | |
21 | eqid 2725 | . . . . . 6 β’ (+gβ(π βπ₯)) = (+gβ(π βπ₯)) | |
22 | 20, 21 | mndcl 18699 | . . . . 5 β’ (((π βπ₯) β Mnd β§ (πΉβπ₯) β (Baseβ(π βπ₯)) β§ (πΊβπ₯) β (Baseβ(π βπ₯))) β ((πΉβπ₯)(+gβ(π βπ₯))(πΊβπ₯)) β (Baseβ(π βπ₯))) |
23 | 11, 17, 19, 22 | syl3anc 1368 | . . . 4 β’ ((π β§ π₯ β πΌ) β ((πΉβπ₯)(+gβ(π βπ₯))(πΊβπ₯)) β (Baseβ(π βπ₯))) |
24 | 23 | ralrimiva 3136 | . . 3 β’ (π β βπ₯ β πΌ ((πΉβπ₯)(+gβ(π βπ₯))(πΊβπ₯)) β (Baseβ(π βπ₯))) |
25 | 1, 2, 3, 4, 6 | prdsbasmpt 17449 | . . 3 β’ (π β ((π₯ β πΌ β¦ ((πΉβπ₯)(+gβ(π βπ₯))(πΊβπ₯))) β π΅ β βπ₯ β πΌ ((πΉβπ₯)(+gβ(π βπ₯))(πΊβπ₯)) β (Baseβ(π βπ₯)))) |
26 | 24, 25 | mpbird 256 | . 2 β’ (π β (π₯ β πΌ β¦ ((πΉβπ₯)(+gβ(π βπ₯))(πΊβπ₯))) β π΅) |
27 | 10, 26 | eqeltrd 2825 | 1 β’ (π β (πΉ + πΊ) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3051 β¦ cmpt 5226 Fn wfn 6537 βΆwf 6538 βcfv 6542 (class class class)co 7415 Basecbs 17177 +gcplusg 17230 Xscprds 17424 Mndcmnd 18691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-ixp 8913 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-struct 17113 df-slot 17148 df-ndx 17160 df-base 17178 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-hom 17254 df-cco 17255 df-prds 17426 df-mgm 18597 df-sgrp 18676 df-mnd 18692 |
This theorem is referenced by: prdsmndd 18724 prdsrngd 20118 prdsringd 20259 dsmmacl 21677 |
Copyright terms: Public domain | W3C validator |