MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsplusgcl Structured version   Visualization version   GIF version

Theorem prdsplusgcl 18416
Description: Structure product pointwise sums are closed when the factors are monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsplusgcl.y 𝑌 = (𝑆Xs𝑅)
prdsplusgcl.b 𝐵 = (Base‘𝑌)
prdsplusgcl.p + = (+g𝑌)
prdsplusgcl.s (𝜑𝑆𝑉)
prdsplusgcl.i (𝜑𝐼𝑊)
prdsplusgcl.r (𝜑𝑅:𝐼⟶Mnd)
prdsplusgcl.f (𝜑𝐹𝐵)
prdsplusgcl.g (𝜑𝐺𝐵)
Assertion
Ref Expression
prdsplusgcl (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)

Proof of Theorem prdsplusgcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsplusgcl.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsplusgcl.b . . 3 𝐵 = (Base‘𝑌)
3 prdsplusgcl.s . . 3 (𝜑𝑆𝑉)
4 prdsplusgcl.i . . 3 (𝜑𝐼𝑊)
5 prdsplusgcl.r . . . 4 (𝜑𝑅:𝐼⟶Mnd)
65ffnd 6601 . . 3 (𝜑𝑅 Fn 𝐼)
7 prdsplusgcl.f . . 3 (𝜑𝐹𝐵)
8 prdsplusgcl.g . . 3 (𝜑𝐺𝐵)
9 prdsplusgcl.p . . 3 + = (+g𝑌)
101, 2, 3, 4, 6, 7, 8, 9prdsplusgval 17184 . 2 (𝜑 → (𝐹 + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))))
115ffvelrnda 6961 . . . . 5 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ Mnd)
123adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝑆𝑉)
134adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝐼𝑊)
146adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 Fn 𝐼)
157adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝐹𝐵)
16 simpr 485 . . . . . 6 ((𝜑𝑥𝐼) → 𝑥𝐼)
171, 2, 12, 13, 14, 15, 16prdsbasprj 17183 . . . . 5 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘(𝑅𝑥)))
188adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝐺𝐵)
191, 2, 12, 13, 14, 18, 16prdsbasprj 17183 . . . . 5 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ (Base‘(𝑅𝑥)))
20 eqid 2738 . . . . . 6 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
21 eqid 2738 . . . . . 6 (+g‘(𝑅𝑥)) = (+g‘(𝑅𝑥))
2220, 21mndcl 18393 . . . . 5 (((𝑅𝑥) ∈ Mnd ∧ (𝐹𝑥) ∈ (Base‘(𝑅𝑥)) ∧ (𝐺𝑥) ∈ (Base‘(𝑅𝑥))) → ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥)))
2311, 17, 19, 22syl3anc 1370 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥)))
2423ralrimiva 3103 . . 3 (𝜑 → ∀𝑥𝐼 ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥)))
251, 2, 3, 4, 6prdsbasmpt 17181 . . 3 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))) ∈ 𝐵 ↔ ∀𝑥𝐼 ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥))))
2624, 25mpbird 256 . 2 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))) ∈ 𝐵)
2710, 26eqeltrd 2839 1 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cmpt 5157   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Xscprds 17156  Mndcmnd 18385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-prds 17158  df-mgm 18326  df-sgrp 18375  df-mnd 18386
This theorem is referenced by:  prdsmndd  18418  prdsringd  19851  dsmmacl  20948
  Copyright terms: Public domain W3C validator