| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > submnd0 | Structured version Visualization version GIF version | ||
| Description: The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. See, for example, smndex1mnd 18893 and smndex1n0mnd 18895). (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| submnd0.b | ⊢ 𝐵 = (Base‘𝐺) |
| submnd0.z | ⊢ 0 = (0g‘𝐺) |
| submnd0.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| submnd0 | ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 0 = (0g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 2 | eqid 2736 | . 2 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 3 | eqid 2736 | . 2 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 4 | simprr 772 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 0 ∈ 𝑆) | |
| 5 | submnd0.h | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 6 | submnd0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | 5, 6 | ressbas2 17264 | . . . 4 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐻)) |
| 8 | 7 | ad2antrl 728 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 𝑆 = (Base‘𝐻)) |
| 9 | 4, 8 | eleqtrd 2837 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 0 ∈ (Base‘𝐻)) |
| 10 | fvex 6894 | . . . . . . 7 ⊢ (Base‘𝐻) ∈ V | |
| 11 | 8, 10 | eqeltrdi 2843 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 𝑆 ∈ V) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → 𝑆 ∈ V) |
| 13 | eqid 2736 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 14 | 5, 13 | ressplusg 17310 | . . . . 5 ⊢ (𝑆 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
| 15 | 12, 14 | syl 17 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (+g‘𝐺) = (+g‘𝐻)) |
| 16 | 15 | oveqd 7427 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g‘𝐺)𝑥) = ( 0 (+g‘𝐻)𝑥)) |
| 17 | simpll 766 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 𝐺 ∈ Mnd) | |
| 18 | 5, 6 | ressbasss 17265 | . . . . 5 ⊢ (Base‘𝐻) ⊆ 𝐵 |
| 19 | 18 | sseli 3959 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐻) → 𝑥 ∈ 𝐵) |
| 20 | submnd0.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 21 | 6, 13, 20 | mndlid 18737 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
| 22 | 17, 19, 21 | syl2an 596 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
| 23 | 16, 22 | eqtr3d 2773 | . 2 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g‘𝐻)𝑥) = 𝑥) |
| 24 | 15 | oveqd 7427 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐺) 0 ) = (𝑥(+g‘𝐻) 0 )) |
| 25 | 6, 13, 20 | mndrid 18738 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 26 | 17, 19, 25 | syl2an 596 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 27 | 24, 26 | eqtr3d 2773 | . 2 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐻) 0 ) = 𝑥) |
| 28 | 1, 2, 3, 9, 23, 27 | ismgmid2 18651 | 1 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 0 = (0g‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 +gcplusg 17276 0gc0g 17458 Mndcmnd 18717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 |
| This theorem is referenced by: subm0 18798 xrge00 33012 gsumge0cl 46367 |
| Copyright terms: Public domain | W3C validator |