MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submnd0 Structured version   Visualization version   GIF version

Theorem submnd0 18650
Description: The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. See, for example, smndex1mnd 18787 and smndex1n0mnd 18789). (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
submnd0.b 𝐵 = (Base‘𝐺)
submnd0.z 0 = (0g𝐺)
submnd0.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
submnd0 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0 = (0g𝐻))

Proof of Theorem submnd0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (Base‘𝐻) = (Base‘𝐻)
2 eqid 2733 . 2 (0g𝐻) = (0g𝐻)
3 eqid 2733 . 2 (+g𝐻) = (+g𝐻)
4 simprr 772 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0𝑆)
5 submnd0.h . . . . 5 𝐻 = (𝐺s 𝑆)
6 submnd0.b . . . . 5 𝐵 = (Base‘𝐺)
75, 6ressbas2 17178 . . . 4 (𝑆𝐵𝑆 = (Base‘𝐻))
87ad2antrl 727 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 𝑆 = (Base‘𝐻))
94, 8eleqtrd 2836 . 2 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0 ∈ (Base‘𝐻))
10 fvex 6901 . . . . . . 7 (Base‘𝐻) ∈ V
118, 10eqeltrdi 2842 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 𝑆 ∈ V)
1211adantr 482 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → 𝑆 ∈ V)
13 eqid 2733 . . . . . 6 (+g𝐺) = (+g𝐺)
145, 13ressplusg 17231 . . . . 5 (𝑆 ∈ V → (+g𝐺) = (+g𝐻))
1512, 14syl 17 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (+g𝐺) = (+g𝐻))
1615oveqd 7421 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g𝐺)𝑥) = ( 0 (+g𝐻)𝑥))
17 simpll 766 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 𝐺 ∈ Mnd)
185, 6ressbasss 17179 . . . . 5 (Base‘𝐻) ⊆ 𝐵
1918sseli 3977 . . . 4 (𝑥 ∈ (Base‘𝐻) → 𝑥𝐵)
20 submnd0.z . . . . 5 0 = (0g𝐺)
216, 13, 20mndlid 18641 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ( 0 (+g𝐺)𝑥) = 𝑥)
2217, 19, 21syl2an 597 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g𝐺)𝑥) = 𝑥)
2316, 22eqtr3d 2775 . 2 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g𝐻)𝑥) = 𝑥)
2415oveqd 7421 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g𝐺) 0 ) = (𝑥(+g𝐻) 0 ))
256, 13, 20mndrid 18642 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺) 0 ) = 𝑥)
2617, 19, 25syl2an 597 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g𝐺) 0 ) = 𝑥)
2724, 26eqtr3d 2775 . 2 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g𝐻) 0 ) = 𝑥)
281, 2, 3, 9, 23, 27ismgmid2 18583 1 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0 = (0g𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  wss 3947  cfv 6540  (class class class)co 7404  Basecbs 17140  s cress 17169  +gcplusg 17193  0gc0g 17381  Mndcmnd 18621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622
This theorem is referenced by:  subm0  18692  xrge00  32165  gsumge0cl  45022
  Copyright terms: Public domain W3C validator