| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > submnd0 | Structured version Visualization version GIF version | ||
| Description: The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. See, for example, smndex1mnd 18818 and smndex1n0mnd 18820). (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| submnd0.b | ⊢ 𝐵 = (Base‘𝐺) |
| submnd0.z | ⊢ 0 = (0g‘𝐺) |
| submnd0.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| submnd0 | ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 0 = (0g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 2 | eqid 2731 | . 2 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 3 | eqid 2731 | . 2 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 4 | simprr 772 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 0 ∈ 𝑆) | |
| 5 | submnd0.h | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 6 | submnd0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | 5, 6 | ressbas2 17149 | . . . 4 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐻)) |
| 8 | 7 | ad2antrl 728 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 𝑆 = (Base‘𝐻)) |
| 9 | 4, 8 | eleqtrd 2833 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 0 ∈ (Base‘𝐻)) |
| 10 | fvex 6835 | . . . . . . 7 ⊢ (Base‘𝐻) ∈ V | |
| 11 | 8, 10 | eqeltrdi 2839 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 𝑆 ∈ V) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → 𝑆 ∈ V) |
| 13 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 14 | 5, 13 | ressplusg 17195 | . . . . 5 ⊢ (𝑆 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
| 15 | 12, 14 | syl 17 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (+g‘𝐺) = (+g‘𝐻)) |
| 16 | 15 | oveqd 7363 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g‘𝐺)𝑥) = ( 0 (+g‘𝐻)𝑥)) |
| 17 | simpll 766 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 𝐺 ∈ Mnd) | |
| 18 | 5, 6 | ressbasss 17150 | . . . . 5 ⊢ (Base‘𝐻) ⊆ 𝐵 |
| 19 | 18 | sseli 3930 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐻) → 𝑥 ∈ 𝐵) |
| 20 | submnd0.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 21 | 6, 13, 20 | mndlid 18662 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
| 22 | 17, 19, 21 | syl2an 596 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
| 23 | 16, 22 | eqtr3d 2768 | . 2 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → ( 0 (+g‘𝐻)𝑥) = 𝑥) |
| 24 | 15 | oveqd 7363 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐺) 0 ) = (𝑥(+g‘𝐻) 0 )) |
| 25 | 6, 13, 20 | mndrid 18663 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 26 | 17, 19, 25 | syl2an 596 | . . 3 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 27 | 24, 26 | eqtr3d 2768 | . 2 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) ∧ 𝑥 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐻) 0 ) = 𝑥) |
| 28 | 1, 2, 3, 9, 23, 27 | ismgmid2 18576 | 1 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 0 = (0g‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 0gc0g 17343 Mndcmnd 18642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 |
| This theorem is referenced by: subm0 18723 xrge00 32993 gsumge0cl 46415 |
| Copyright terms: Public domain | W3C validator |