MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantan Structured version   Visualization version   GIF version

Theorem atantan 24941
Description: The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atantan ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴)

Proof of Theorem atantan
StepHypRef Expression
1 cosne0 24568 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
2 atandmtan 24938 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan)
31, 2syldan 585 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) ∈ dom arctan)
4 atanval 24902 . . 3 ((tan‘𝐴) ∈ dom arctan → (arctan‘(tan‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))))
53, 4syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))))
6 ax-1cn 10247 . . . . . . 7 1 ∈ ℂ
7 ax-icn 10248 . . . . . . . 8 i ∈ ℂ
8 tancl 15143 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ)
91, 8syldan 585 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) ∈ ℂ)
10 mulcl 10273 . . . . . . . 8 ((i ∈ ℂ ∧ (tan‘𝐴) ∈ ℂ) → (i · (tan‘𝐴)) ∈ ℂ)
117, 9, 10sylancr 581 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (tan‘𝐴)) ∈ ℂ)
12 addcl 10271 . . . . . . 7 ((1 ∈ ℂ ∧ (i · (tan‘𝐴)) ∈ ℂ) → (1 + (i · (tan‘𝐴))) ∈ ℂ)
136, 11, 12sylancr 581 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + (i · (tan‘𝐴))) ∈ ℂ)
14 atandm2 24895 . . . . . . . 8 ((tan‘𝐴) ∈ dom arctan ↔ ((tan‘𝐴) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0 ∧ (1 + (i · (tan‘𝐴))) ≠ 0))
153, 14sylib 209 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((tan‘𝐴) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0 ∧ (1 + (i · (tan‘𝐴))) ≠ 0))
1615simp3d 1174 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + (i · (tan‘𝐴))) ≠ 0)
1713, 16logcld 24608 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(1 + (i · (tan‘𝐴)))) ∈ ℂ)
18 subcl 10534 . . . . . . 7 ((1 ∈ ℂ ∧ (i · (tan‘𝐴)) ∈ ℂ) → (1 − (i · (tan‘𝐴))) ∈ ℂ)
196, 11, 18sylancr 581 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − (i · (tan‘𝐴))) ∈ ℂ)
2015simp2d 1173 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − (i · (tan‘𝐴))) ≠ 0)
2119, 20logcld 24608 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(1 − (i · (tan‘𝐴)))) ∈ ℂ)
2217, 21negsubdi2d 10662 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴))))))
23 efsub 15114 . . . . . . . . 9 (((log‘(1 + (i · (tan‘𝐴)))) ∈ ℂ ∧ (log‘(1 − (i · (tan‘𝐴)))) ∈ ℂ) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
2417, 21, 23syl2anc 579 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
25 coscl 15141 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2625adantr 472 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ∈ ℂ)
27 sincl 15140 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
2827adantr 472 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘𝐴) ∈ ℂ)
29 mulcl 10273 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
307, 28, 29sylancr 581 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘𝐴)) ∈ ℂ)
3126, 30, 26, 1divdird 11093 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)) = (((cos‘𝐴) / (cos‘𝐴)) + ((i · (sin‘𝐴)) / (cos‘𝐴))))
3226, 1dividd 11053 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴) / (cos‘𝐴)) = 1)
337a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → i ∈ ℂ)
3433, 28, 26, 1divassd 11090 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) / (cos‘𝐴)) = (i · ((sin‘𝐴) / (cos‘𝐴))))
35 tanval 15142 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
361, 35syldan 585 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
3736oveq2d 6858 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (tan‘𝐴)) = (i · ((sin‘𝐴) / (cos‘𝐴))))
3834, 37eqtr4d 2802 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) / (cos‘𝐴)) = (i · (tan‘𝐴)))
3932, 38oveq12d 6860 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) / (cos‘𝐴)) + ((i · (sin‘𝐴)) / (cos‘𝐴))) = (1 + (i · (tan‘𝐴))))
4031, 39eqtrd 2799 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)) = (1 + (i · (tan‘𝐴))))
41 efival 15166 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4241adantr 472 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4342oveq1d 6857 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) / (cos‘𝐴)) = (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)))
44 eflog 24614 . . . . . . . . . . 11 (((1 + (i · (tan‘𝐴))) ∈ ℂ ∧ (1 + (i · (tan‘𝐴))) ≠ 0) → (exp‘(log‘(1 + (i · (tan‘𝐴))))) = (1 + (i · (tan‘𝐴))))
4513, 16, 44syl2anc 579 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(log‘(1 + (i · (tan‘𝐴))))) = (1 + (i · (tan‘𝐴))))
4640, 43, 453eqtr4d 2809 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) / (cos‘𝐴)) = (exp‘(log‘(1 + (i · (tan‘𝐴))))))
4726, 30, 26, 1divsubdird 11094 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)) = (((cos‘𝐴) / (cos‘𝐴)) − ((i · (sin‘𝐴)) / (cos‘𝐴))))
4832, 38oveq12d 6860 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) / (cos‘𝐴)) − ((i · (sin‘𝐴)) / (cos‘𝐴))) = (1 − (i · (tan‘𝐴))))
4947, 48eqtrd 2799 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)) = (1 − (i · (tan‘𝐴))))
50 negcl 10535 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
5150adantr 472 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -𝐴 ∈ ℂ)
52 efival 15166 . . . . . . . . . . . . . 14 (-𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
5351, 52syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
54 cosneg 15161 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
5554adantr 472 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘-𝐴) = (cos‘𝐴))
56 sinneg 15160 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
5756adantr 472 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘-𝐴) = -(sin‘𝐴))
5857oveq2d 6858 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘-𝐴)) = (i · -(sin‘𝐴)))
59 mulneg2 10721 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
607, 28, 59sylancr 581 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
6158, 60eqtrd 2799 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘-𝐴)) = -(i · (sin‘𝐴)))
6255, 61oveq12d 6860 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘-𝐴) + (i · (sin‘-𝐴))) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
6353, 62eqtrd 2799 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
64 simpl 474 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
65 mulneg2 10721 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
667, 64, 65sylancr 581 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -𝐴) = -(i · 𝐴))
6766fveq2d 6379 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = (exp‘-(i · 𝐴)))
6826, 30negsubd 10652 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴) + -(i · (sin‘𝐴))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
6963, 67, 683eqtr3d 2807 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
7069oveq1d 6857 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘-(i · 𝐴)) / (cos‘𝐴)) = (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)))
71 eflog 24614 . . . . . . . . . . 11 (((1 − (i · (tan‘𝐴))) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0) → (exp‘(log‘(1 − (i · (tan‘𝐴))))) = (1 − (i · (tan‘𝐴))))
7219, 20, 71syl2anc 579 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(log‘(1 − (i · (tan‘𝐴))))) = (1 − (i · (tan‘𝐴))))
7349, 70, 723eqtr4d 2809 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘-(i · 𝐴)) / (cos‘𝐴)) = (exp‘(log‘(1 − (i · (tan‘𝐴))))))
7446, 73oveq12d 6860 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
75 mulcl 10273 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
767, 64, 75sylancr 581 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ℂ)
77 efcl 15097 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
7876, 77syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) ∈ ℂ)
7976negcld 10633 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(i · 𝐴) ∈ ℂ)
80 efcl 15097 . . . . . . . . . . 11 (-(i · 𝐴) ∈ ℂ → (exp‘-(i · 𝐴)) ∈ ℂ)
8179, 80syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) ∈ ℂ)
82 efne0 15111 . . . . . . . . . . 11 (-(i · 𝐴) ∈ ℂ → (exp‘-(i · 𝐴)) ≠ 0)
8379, 82syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) ≠ 0)
8478, 81, 26, 83, 1divcan7d 11083 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
85 efsub 15114 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ -(i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) − -(i · 𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
8676, 79, 85syl2anc 579 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((i · 𝐴) − -(i · 𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
8776, 76subnegd 10653 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · 𝐴) − -(i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
88762timesd 11521 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
8987, 88eqtr4d 2802 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · 𝐴) − -(i · 𝐴)) = (2 · (i · 𝐴)))
9089fveq2d 6379 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((i · 𝐴) − -(i · 𝐴))) = (exp‘(2 · (i · 𝐴))))
9184, 86, 903eqtr2d 2805 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = (exp‘(2 · (i · 𝐴))))
9224, 74, 913eqtr2d 2805 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = (exp‘(2 · (i · 𝐴))))
9392fveq2d 6379 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = (log‘(exp‘(2 · (i · 𝐴)))))
943adantr 472 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (tan‘𝐴) ∈ dom arctan)
9551adantr 472 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -𝐴 ∈ ℂ)
9664adantr 472 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 𝐴 ∈ ℂ)
9796renegd 14236 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
9896recld 14221 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘𝐴) ∈ ℝ)
9998renegcld 10711 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) ∈ ℝ)
100 simpr 477 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘𝐴) < 0)
10198lt0neg1d 10851 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((ℜ‘𝐴) < 0 ↔ 0 < -(ℜ‘𝐴)))
102100, 101mpbid 223 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘𝐴))
103 eliooord 12435 . . . . . . . . . . . . . . . . . . 19 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
104103adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
105104simpld 488 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) < (ℜ‘𝐴))
106105adantr 472 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(π / 2) < (ℜ‘𝐴))
107 halfpire 24508 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
108 ltnegcon1 10783 . . . . . . . . . . . . . . . . 17 (((π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (-(π / 2) < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < (π / 2)))
109107, 98, 108sylancr 581 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (-(π / 2) < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < (π / 2)))
110106, 109mpbid 223 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) < (π / 2))
111 0xr 10340 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
112107rexri 10351 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ*
113 elioo2 12418 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-(ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ (-(ℜ‘𝐴) ∈ ℝ ∧ 0 < -(ℜ‘𝐴) ∧ -(ℜ‘𝐴) < (π / 2))))
114111, 112, 113mp2an 683 . . . . . . . . . . . . . . 15 (-(ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ (-(ℜ‘𝐴) ∈ ℝ ∧ 0 < -(ℜ‘𝐴) ∧ -(ℜ‘𝐴) < (π / 2)))
11599, 102, 110, 114syl3anbrc 1443 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) ∈ (0(,)(π / 2)))
11697, 115eqeltrd 2844 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) ∈ (0(,)(π / 2)))
117 tanregt0 24577 . . . . . . . . . . . . 13 ((-𝐴 ∈ ℂ ∧ (ℜ‘-𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘-𝐴)))
11895, 116, 117syl2anc 579 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < (ℜ‘(tan‘-𝐴)))
119 tanneg 15162 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴))
1201, 119syldan 585 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘-𝐴) = -(tan‘𝐴))
121120adantr 472 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (tan‘-𝐴) = -(tan‘𝐴))
122121fveq2d 6379 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘-𝐴)) = (ℜ‘-(tan‘𝐴)))
1239adantr 472 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (tan‘𝐴) ∈ ℂ)
124123renegd 14236 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-(tan‘𝐴)) = -(ℜ‘(tan‘𝐴)))
125122, 124eqtrd 2799 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘-𝐴)) = -(ℜ‘(tan‘𝐴)))
126118, 125breqtrd 4835 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘(tan‘𝐴)))
1279recld 14221 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(tan‘𝐴)) ∈ ℝ)
128127adantr 472 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) ∈ ℝ)
129128lt0neg1d 10851 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((ℜ‘(tan‘𝐴)) < 0 ↔ 0 < -(ℜ‘(tan‘𝐴))))
130126, 129mpbird 248 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) < 0)
131130lt0ne0d 10847 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) ≠ 0)
132 atanlogsub 24934 . . . . . . . . 9 (((tan‘𝐴) ∈ dom arctan ∧ (ℜ‘(tan‘𝐴)) ≠ 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
13394, 131, 132syl2anc 579 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
134 1re 10293 . . . . . . . . . . . . 13 1 ∈ ℝ
135 ioossre 12437 . . . . . . . . . . . . . 14 (-1(,)1) ⊆ ℝ
1367a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → i ∈ ℂ)
13711adantr 472 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ ℂ)
138 ine0 10719 . . . . . . . . . . . . . . . . 17 i ≠ 0
139138a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → i ≠ 0)
140 ixi 10910 . . . . . . . . . . . . . . . . . . 19 (i · i) = -1
141140oveq1i 6852 . . . . . . . . . . . . . . . . . 18 ((i · i) · (tan‘𝐴)) = (-1 · (tan‘𝐴))
1429adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘𝐴) ∈ ℂ)
143142mulm1d 10736 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · (tan‘𝐴)) = -(tan‘𝐴))
144120adantr 472 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘-𝐴) = -(tan‘𝐴))
145143, 144eqtr4d 2802 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · (tan‘𝐴)) = (tan‘-𝐴))
146141, 145syl5eq 2811 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · (tan‘𝐴)) = (tan‘-𝐴))
147136, 136, 142mulassd 10317 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · (tan‘𝐴)) = (i · (i · (tan‘𝐴))))
148140oveq1i 6852 . . . . . . . . . . . . . . . . . . . 20 ((i · i) · 𝐴) = (-1 · 𝐴)
14964adantr 472 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 𝐴 ∈ ℂ)
150149mulm1d 10736 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · 𝐴) = -𝐴)
151148, 150syl5eq 2811 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · 𝐴) = -𝐴)
152136, 136, 149mulassd 10317 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
153151, 152eqtr3d 2801 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → -𝐴 = (i · (i · 𝐴)))
154153fveq2d 6379 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘-𝐴) = (tan‘(i · (i · 𝐴))))
155146, 147, 1543eqtr3d 2807 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (i · (tan‘𝐴))) = (tan‘(i · (i · 𝐴))))
156136, 137, 139, 155mvllmuld 11111 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) = ((tan‘(i · (i · 𝐴))) / i))
15776adantr 472 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℂ)
158 reim 14136 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
159158adantr 472 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
160159eqeq1d 2767 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) = 0 ↔ (ℑ‘(i · 𝐴)) = 0))
161160biimpa 468 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (ℑ‘(i · 𝐴)) = 0)
162157, 161reim0bd 14227 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
163 tanhbnd 15175 . . . . . . . . . . . . . . . 16 ((i · 𝐴) ∈ ℝ → ((tan‘(i · (i · 𝐴))) / i) ∈ (-1(,)1))
164162, 163syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((tan‘(i · (i · 𝐴))) / i) ∈ (-1(,)1))
165156, 164eqeltrd 2844 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ (-1(,)1))
166135, 165sseldi 3759 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ ℝ)
167 readdcl 10272 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ (i · (tan‘𝐴)) ∈ ℝ) → (1 + (i · (tan‘𝐴))) ∈ ℝ)
168134, 166, 167sylancr 581 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 + (i · (tan‘𝐴))) ∈ ℝ)
169 df-neg 10523 . . . . . . . . . . . . . 14 -1 = (0 − 1)
170 eliooord 12435 . . . . . . . . . . . . . . . 16 ((i · (tan‘𝐴)) ∈ (-1(,)1) → (-1 < (i · (tan‘𝐴)) ∧ (i · (tan‘𝐴)) < 1))
171165, 170syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 < (i · (tan‘𝐴)) ∧ (i · (tan‘𝐴)) < 1))
172171simpld 488 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → -1 < (i · (tan‘𝐴)))
173169, 172syl5eqbrr 4845 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (0 − 1) < (i · (tan‘𝐴)))
174 0red 10297 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 0 ∈ ℝ)
175134a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 1 ∈ ℝ)
176174, 175, 166ltsubadd2d 10879 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((0 − 1) < (i · (tan‘𝐴)) ↔ 0 < (1 + (i · (tan‘𝐴)))))
177173, 176mpbid 223 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 0 < (1 + (i · (tan‘𝐴))))
178168, 177elrpd 12067 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 + (i · (tan‘𝐴))) ∈ ℝ+)
179178relogcld 24660 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (log‘(1 + (i · (tan‘𝐴)))) ∈ ℝ)
180171simprd 489 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) < 1)
181 difrp 12066 . . . . . . . . . . . . 13 (((i · (tan‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → ((i · (tan‘𝐴)) < 1 ↔ (1 − (i · (tan‘𝐴))) ∈ ℝ+))
182166, 134, 181sylancl 580 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · (tan‘𝐴)) < 1 ↔ (1 − (i · (tan‘𝐴))) ∈ ℝ+))
183180, 182mpbid 223 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 − (i · (tan‘𝐴))) ∈ ℝ+)
184183relogcld 24660 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (log‘(1 − (i · (tan‘𝐴)))) ∈ ℝ)
185179, 184resubcld 10712 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ℝ)
186 relogrn 24599 . . . . . . . . 9 (((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ℝ → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
187185, 186syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
1883adantr 472 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (tan‘𝐴) ∈ dom arctan)
18964adantr 472 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
190189recld 14221 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
191 simpr 477 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
192104simprd 489 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < (π / 2))
193192adantr 472 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) < (π / 2))
194 elioo2 12418 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2))))
195111, 112, 194mp2an 683 . . . . . . . . . . . 12 ((ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
196190, 191, 193, 195syl3anbrc 1443 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ (0(,)(π / 2)))
197 tanregt0 24577 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))
198189, 196, 197syl2anc 579 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(tan‘𝐴)))
199198gt0ne0d 10846 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(tan‘𝐴)) ≠ 0)
200188, 199, 132syl2anc 579 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
201 recl 14137 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
202201adantr 472 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
203 0re 10295 . . . . . . . . 9 0 ∈ ℝ
204 lttri4 10376 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐴) < 0 ∨ (ℜ‘𝐴) = 0 ∨ 0 < (ℜ‘𝐴)))
205202, 203, 204sylancl 580 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) < 0 ∨ (ℜ‘𝐴) = 0 ∨ 0 < (ℜ‘𝐴)))
206133, 187, 200, 205mpjao3dan 1556 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
207 logef 24619 . . . . . . 7 (((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))
208206, 207syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))
209 2cn 11347 . . . . . . . . 9 2 ∈ ℂ
210 mulcl 10273 . . . . . . . . 9 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · (i · 𝐴)) ∈ ℂ)
211209, 76, 210sylancr 581 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) ∈ ℂ)
212 picn 24503 . . . . . . . . . . . 12 π ∈ ℂ
213 2ne0 11383 . . . . . . . . . . . 12 2 ≠ 0
214 divneg 10973 . . . . . . . . . . . 12 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
215212, 209, 213, 214mp3an 1585 . . . . . . . . . . 11 -(π / 2) = (-π / 2)
216215, 105syl5eqbrr 4845 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-π / 2) < (ℜ‘𝐴))
217 pire 24502 . . . . . . . . . . . . 13 π ∈ ℝ
218217renegcli 10596 . . . . . . . . . . . 12 -π ∈ ℝ
219218a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π ∈ ℝ)
220 2re 11346 . . . . . . . . . . . 12 2 ∈ ℝ
221220a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℝ)
222 2pos 11382 . . . . . . . . . . . 12 0 < 2
223222a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < 2)
224 ltdivmul 11152 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((-π / 2) < (ℜ‘𝐴) ↔ -π < (2 · (ℜ‘𝐴))))
225219, 202, 221, 223, 224syl112anc 1493 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((-π / 2) < (ℜ‘𝐴) ↔ -π < (2 · (ℜ‘𝐴))))
226216, 225mpbid 223 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (2 · (ℜ‘𝐴)))
227 immul2 14164 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℑ‘(i · 𝐴))))
228220, 76, 227sylancr 581 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℑ‘(i · 𝐴))))
229159oveq2d 6858 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) = (2 · (ℑ‘(i · 𝐴))))
230228, 229eqtr4d 2802 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℜ‘𝐴)))
231226, 230breqtrrd 4837 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℑ‘(2 · (i · 𝐴))))
232 remulcl 10274 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (2 · (ℜ‘𝐴)) ∈ ℝ)
233220, 202, 232sylancr 581 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) ∈ ℝ)
234217a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℝ)
235 ltmuldiv2 11151 . . . . . . . . . . . 12 (((ℜ‘𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (ℜ‘𝐴)) < π ↔ (ℜ‘𝐴) < (π / 2)))
236202, 234, 221, 223, 235syl112anc 1493 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((2 · (ℜ‘𝐴)) < π ↔ (ℜ‘𝐴) < (π / 2)))
237192, 236mpbird 248 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) < π)
238233, 234, 237ltled 10439 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) ≤ π)
239230, 238eqbrtrd 4831 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) ≤ π)
240 ellogrn 24597 . . . . . . . 8 ((2 · (i · 𝐴)) ∈ ran log ↔ ((2 · (i · 𝐴)) ∈ ℂ ∧ -π < (ℑ‘(2 · (i · 𝐴))) ∧ (ℑ‘(2 · (i · 𝐴))) ≤ π))
241211, 231, 239, 240syl3anbrc 1443 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) ∈ ran log)
242 logef 24619 . . . . . . 7 ((2 · (i · 𝐴)) ∈ ran log → (log‘(exp‘(2 · (i · 𝐴)))) = (2 · (i · 𝐴)))
243241, 242syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(2 · (i · 𝐴)))) = (2 · (i · 𝐴)))
24493, 208, 2433eqtr3d 2807 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = (2 · (i · 𝐴)))
245244negeqd 10529 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = -(2 · (i · 𝐴)))
24622, 245eqtr3d 2801 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴))))) = -(2 · (i · 𝐴)))
247246oveq2d 6858 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))) = ((i / 2) · -(2 · (i · 𝐴))))
248 halfcl 11503 . . . . 5 (i ∈ ℂ → (i / 2) ∈ ℂ)
2497, 248mp1i 13 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i / 2) ∈ ℂ)
250209a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℂ)
251249, 250, 79mulassd 10317 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((i / 2) · 2) · -(i · 𝐴)) = ((i / 2) · (2 · -(i · 𝐴))))
2527, 209, 213divcan1i 11023 . . . . 5 ((i / 2) · 2) = i
253252oveq1i 6852 . . . 4 (((i / 2) · 2) · -(i · 𝐴)) = (i · -(i · 𝐴))
25433, 33, 51mulassd 10317 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · i) · -𝐴) = (i · (i · -𝐴)))
255140oveq1i 6852 . . . . . 6 ((i · i) · -𝐴) = (-1 · -𝐴)
256 mul2neg 10723 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-1 · -𝐴) = (1 · 𝐴))
2576, 64, 256sylancr 581 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · -𝐴) = (1 · 𝐴))
258 mulid2 10292 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
259258adantr 472 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 · 𝐴) = 𝐴)
260257, 259eqtrd 2799 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · -𝐴) = 𝐴)
261255, 260syl5eq 2811 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · i) · -𝐴) = 𝐴)
26266oveq2d 6858 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (i · -𝐴)) = (i · -(i · 𝐴)))
263254, 261, 2623eqtr3rd 2808 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -(i · 𝐴)) = 𝐴)
264253, 263syl5eq 2811 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((i / 2) · 2) · -(i · 𝐴)) = 𝐴)
265 mulneg2 10721 . . . . 5 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · -(i · 𝐴)) = -(2 · (i · 𝐴)))
266209, 76, 265sylancr 581 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · -(i · 𝐴)) = -(2 · (i · 𝐴)))
267266oveq2d 6858 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · (2 · -(i · 𝐴))) = ((i / 2) · -(2 · (i · 𝐴))))
268251, 264, 2673eqtr3rd 2808 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · -(2 · (i · 𝐴))) = 𝐴)
2695, 247, 2683eqtrd 2803 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3o 1106  w3a 1107   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4809  dom cdm 5277  ran crn 5278  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190  ici 10191   + caddc 10192   · cmul 10194  *cxr 10327   < clt 10328  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  2c2 11327  +crp 12028  (,)cioo 12377  cre 14124  cim 14125  expce 15076  sincsin 15078  cosccos 15079  tanctan 15080  πcpi 15081  logclog 24592  arctancatan 24882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14094  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-clim 14506  df-rlim 14507  df-sum 14704  df-ef 15082  df-sin 15084  df-cos 15085  df-tan 15086  df-pi 15087  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-log 24594  df-atan 24885
This theorem is referenced by:  atantanb  24942  atan1  24946
  Copyright terms: Public domain W3C validator