Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantan Structured version   Visualization version   GIF version

Theorem atantan 25516
 Description: The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atantan ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴)

Proof of Theorem atantan
StepHypRef Expression
1 cosne0 25128 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
2 atandmtan 25513 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan)
31, 2syldan 594 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) ∈ dom arctan)
4 atanval 25477 . . 3 ((tan‘𝐴) ∈ dom arctan → (arctan‘(tan‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))))
53, 4syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))))
6 ax-1cn 10586 . . . . . . 7 1 ∈ ℂ
7 ax-icn 10587 . . . . . . . 8 i ∈ ℂ
8 tancl 15476 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ)
91, 8syldan 594 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) ∈ ℂ)
10 mulcl 10612 . . . . . . . 8 ((i ∈ ℂ ∧ (tan‘𝐴) ∈ ℂ) → (i · (tan‘𝐴)) ∈ ℂ)
117, 9, 10sylancr 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (tan‘𝐴)) ∈ ℂ)
12 addcl 10610 . . . . . . 7 ((1 ∈ ℂ ∧ (i · (tan‘𝐴)) ∈ ℂ) → (1 + (i · (tan‘𝐴))) ∈ ℂ)
136, 11, 12sylancr 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + (i · (tan‘𝐴))) ∈ ℂ)
14 atandm2 25470 . . . . . . . 8 ((tan‘𝐴) ∈ dom arctan ↔ ((tan‘𝐴) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0 ∧ (1 + (i · (tan‘𝐴))) ≠ 0))
153, 14sylib 221 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((tan‘𝐴) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0 ∧ (1 + (i · (tan‘𝐴))) ≠ 0))
1615simp3d 1141 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + (i · (tan‘𝐴))) ≠ 0)
1713, 16logcld 25169 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(1 + (i · (tan‘𝐴)))) ∈ ℂ)
18 subcl 10876 . . . . . . 7 ((1 ∈ ℂ ∧ (i · (tan‘𝐴)) ∈ ℂ) → (1 − (i · (tan‘𝐴))) ∈ ℂ)
196, 11, 18sylancr 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − (i · (tan‘𝐴))) ∈ ℂ)
2015simp2d 1140 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − (i · (tan‘𝐴))) ≠ 0)
2119, 20logcld 25169 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(1 − (i · (tan‘𝐴)))) ∈ ℂ)
2217, 21negsubdi2d 11004 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴))))))
23 efsub 15447 . . . . . . . . 9 (((log‘(1 + (i · (tan‘𝐴)))) ∈ ℂ ∧ (log‘(1 − (i · (tan‘𝐴)))) ∈ ℂ) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
2417, 21, 23syl2anc 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
25 coscl 15474 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2625adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ∈ ℂ)
27 sincl 15473 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
2827adantr 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘𝐴) ∈ ℂ)
29 mulcl 10612 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
307, 28, 29sylancr 590 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘𝐴)) ∈ ℂ)
3126, 30, 26, 1divdird 11445 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)) = (((cos‘𝐴) / (cos‘𝐴)) + ((i · (sin‘𝐴)) / (cos‘𝐴))))
3226, 1dividd 11405 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴) / (cos‘𝐴)) = 1)
337a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → i ∈ ℂ)
3433, 28, 26, 1divassd 11442 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) / (cos‘𝐴)) = (i · ((sin‘𝐴) / (cos‘𝐴))))
35 tanval 15475 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
361, 35syldan 594 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
3736oveq2d 7151 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (tan‘𝐴)) = (i · ((sin‘𝐴) / (cos‘𝐴))))
3834, 37eqtr4d 2836 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) / (cos‘𝐴)) = (i · (tan‘𝐴)))
3932, 38oveq12d 7153 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) / (cos‘𝐴)) + ((i · (sin‘𝐴)) / (cos‘𝐴))) = (1 + (i · (tan‘𝐴))))
4031, 39eqtrd 2833 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)) = (1 + (i · (tan‘𝐴))))
41 efival 15499 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4241adantr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4342oveq1d 7150 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) / (cos‘𝐴)) = (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)))
44 eflog 25175 . . . . . . . . . . 11 (((1 + (i · (tan‘𝐴))) ∈ ℂ ∧ (1 + (i · (tan‘𝐴))) ≠ 0) → (exp‘(log‘(1 + (i · (tan‘𝐴))))) = (1 + (i · (tan‘𝐴))))
4513, 16, 44syl2anc 587 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(log‘(1 + (i · (tan‘𝐴))))) = (1 + (i · (tan‘𝐴))))
4640, 43, 453eqtr4d 2843 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) / (cos‘𝐴)) = (exp‘(log‘(1 + (i · (tan‘𝐴))))))
4726, 30, 26, 1divsubdird 11446 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)) = (((cos‘𝐴) / (cos‘𝐴)) − ((i · (sin‘𝐴)) / (cos‘𝐴))))
4832, 38oveq12d 7153 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) / (cos‘𝐴)) − ((i · (sin‘𝐴)) / (cos‘𝐴))) = (1 − (i · (tan‘𝐴))))
4947, 48eqtrd 2833 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)) = (1 − (i · (tan‘𝐴))))
50 negcl 10877 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
5150adantr 484 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -𝐴 ∈ ℂ)
52 efival 15499 . . . . . . . . . . . . . 14 (-𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
5351, 52syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
54 cosneg 15494 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
5554adantr 484 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘-𝐴) = (cos‘𝐴))
56 sinneg 15493 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
5756adantr 484 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘-𝐴) = -(sin‘𝐴))
5857oveq2d 7151 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘-𝐴)) = (i · -(sin‘𝐴)))
59 mulneg2 11068 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
607, 28, 59sylancr 590 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
6158, 60eqtrd 2833 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘-𝐴)) = -(i · (sin‘𝐴)))
6255, 61oveq12d 7153 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘-𝐴) + (i · (sin‘-𝐴))) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
6353, 62eqtrd 2833 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
64 simpl 486 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
65 mulneg2 11068 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
667, 64, 65sylancr 590 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -𝐴) = -(i · 𝐴))
6766fveq2d 6649 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = (exp‘-(i · 𝐴)))
6826, 30negsubd 10994 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴) + -(i · (sin‘𝐴))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
6963, 67, 683eqtr3d 2841 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
7069oveq1d 7150 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘-(i · 𝐴)) / (cos‘𝐴)) = (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)))
71 eflog 25175 . . . . . . . . . . 11 (((1 − (i · (tan‘𝐴))) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0) → (exp‘(log‘(1 − (i · (tan‘𝐴))))) = (1 − (i · (tan‘𝐴))))
7219, 20, 71syl2anc 587 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(log‘(1 − (i · (tan‘𝐴))))) = (1 − (i · (tan‘𝐴))))
7349, 70, 723eqtr4d 2843 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘-(i · 𝐴)) / (cos‘𝐴)) = (exp‘(log‘(1 − (i · (tan‘𝐴))))))
7446, 73oveq12d 7153 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
75 mulcl 10612 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
767, 64, 75sylancr 590 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ℂ)
77 efcl 15430 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
7876, 77syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) ∈ ℂ)
7976negcld 10975 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(i · 𝐴) ∈ ℂ)
80 efcl 15430 . . . . . . . . . . 11 (-(i · 𝐴) ∈ ℂ → (exp‘-(i · 𝐴)) ∈ ℂ)
8179, 80syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) ∈ ℂ)
82 efne0 15444 . . . . . . . . . . 11 (-(i · 𝐴) ∈ ℂ → (exp‘-(i · 𝐴)) ≠ 0)
8379, 82syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) ≠ 0)
8478, 81, 26, 83, 1divcan7d 11435 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
85 efsub 15447 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ -(i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) − -(i · 𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
8676, 79, 85syl2anc 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((i · 𝐴) − -(i · 𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
8776, 76subnegd 10995 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · 𝐴) − -(i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
88762timesd 11870 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
8987, 88eqtr4d 2836 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · 𝐴) − -(i · 𝐴)) = (2 · (i · 𝐴)))
9089fveq2d 6649 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((i · 𝐴) − -(i · 𝐴))) = (exp‘(2 · (i · 𝐴))))
9184, 86, 903eqtr2d 2839 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = (exp‘(2 · (i · 𝐴))))
9224, 74, 913eqtr2d 2839 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = (exp‘(2 · (i · 𝐴))))
9392fveq2d 6649 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = (log‘(exp‘(2 · (i · 𝐴)))))
9464adantr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 𝐴 ∈ ℂ)
9594renegd 14562 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
9694recld 14547 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘𝐴) ∈ ℝ)
9796renegcld 11058 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) ∈ ℝ)
98 simpr 488 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘𝐴) < 0)
9996lt0neg1d 11200 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((ℜ‘𝐴) < 0 ↔ 0 < -(ℜ‘𝐴)))
10098, 99mpbid 235 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘𝐴))
101 eliooord 12786 . . . . . . . . . . . . . . . . . . 19 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
102101adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
103102simpld 498 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) < (ℜ‘𝐴))
104103adantr 484 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(π / 2) < (ℜ‘𝐴))
105 halfpire 25064 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
106 ltnegcon1 11132 . . . . . . . . . . . . . . . . 17 (((π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (-(π / 2) < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < (π / 2)))
107105, 96, 106sylancr 590 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (-(π / 2) < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < (π / 2)))
108104, 107mpbid 235 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) < (π / 2))
109 0xr 10679 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
110105rexri 10690 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ*
111 elioo2 12769 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-(ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ (-(ℜ‘𝐴) ∈ ℝ ∧ 0 < -(ℜ‘𝐴) ∧ -(ℜ‘𝐴) < (π / 2))))
112109, 110, 111mp2an 691 . . . . . . . . . . . . . . 15 (-(ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ (-(ℜ‘𝐴) ∈ ℝ ∧ 0 < -(ℜ‘𝐴) ∧ -(ℜ‘𝐴) < (π / 2)))
11397, 100, 108, 112syl3anbrc 1340 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) ∈ (0(,)(π / 2)))
11495, 113eqeltrd 2890 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) ∈ (0(,)(π / 2)))
115 tanregt0 25138 . . . . . . . . . . . . 13 ((-𝐴 ∈ ℂ ∧ (ℜ‘-𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘-𝐴)))
11651, 114, 115syl2an2r 684 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < (ℜ‘(tan‘-𝐴)))
117 tanneg 15495 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴))
1181, 117syldan 594 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘-𝐴) = -(tan‘𝐴))
119118adantr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (tan‘-𝐴) = -(tan‘𝐴))
120119fveq2d 6649 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘-𝐴)) = (ℜ‘-(tan‘𝐴)))
1219adantr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (tan‘𝐴) ∈ ℂ)
122121renegd 14562 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-(tan‘𝐴)) = -(ℜ‘(tan‘𝐴)))
123120, 122eqtrd 2833 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘-𝐴)) = -(ℜ‘(tan‘𝐴)))
124116, 123breqtrd 5056 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘(tan‘𝐴)))
1259recld 14547 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(tan‘𝐴)) ∈ ℝ)
126125adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) ∈ ℝ)
127126lt0neg1d 11200 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((ℜ‘(tan‘𝐴)) < 0 ↔ 0 < -(ℜ‘(tan‘𝐴))))
128124, 127mpbird 260 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) < 0)
129128lt0ne0d 11196 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) ≠ 0)
130 atanlogsub 25509 . . . . . . . . 9 (((tan‘𝐴) ∈ dom arctan ∧ (ℜ‘(tan‘𝐴)) ≠ 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
1313, 129, 130syl2an2r 684 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
132 1re 10632 . . . . . . . . . . . . 13 1 ∈ ℝ
133 ioossre 12788 . . . . . . . . . . . . . 14 (-1(,)1) ⊆ ℝ
1347a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → i ∈ ℂ)
13511adantr 484 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ ℂ)
136 ine0 11066 . . . . . . . . . . . . . . . . 17 i ≠ 0
137136a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → i ≠ 0)
138 ixi 11260 . . . . . . . . . . . . . . . . . . 19 (i · i) = -1
139138oveq1i 7145 . . . . . . . . . . . . . . . . . 18 ((i · i) · (tan‘𝐴)) = (-1 · (tan‘𝐴))
1409adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘𝐴) ∈ ℂ)
141140mulm1d 11083 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · (tan‘𝐴)) = -(tan‘𝐴))
142118adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘-𝐴) = -(tan‘𝐴))
143141, 142eqtr4d 2836 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · (tan‘𝐴)) = (tan‘-𝐴))
144139, 143syl5eq 2845 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · (tan‘𝐴)) = (tan‘-𝐴))
145134, 134, 140mulassd 10655 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · (tan‘𝐴)) = (i · (i · (tan‘𝐴))))
146138oveq1i 7145 . . . . . . . . . . . . . . . . . . . 20 ((i · i) · 𝐴) = (-1 · 𝐴)
14764adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 𝐴 ∈ ℂ)
148147mulm1d 11083 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · 𝐴) = -𝐴)
149146, 148syl5eq 2845 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · 𝐴) = -𝐴)
150134, 134, 147mulassd 10655 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
151149, 150eqtr3d 2835 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → -𝐴 = (i · (i · 𝐴)))
152151fveq2d 6649 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘-𝐴) = (tan‘(i · (i · 𝐴))))
153144, 145, 1523eqtr3d 2841 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (i · (tan‘𝐴))) = (tan‘(i · (i · 𝐴))))
154134, 135, 137, 153mvllmuld 11463 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) = ((tan‘(i · (i · 𝐴))) / i))
15576adantr 484 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℂ)
156 reim 14462 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
157156adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
158157eqeq1d 2800 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) = 0 ↔ (ℑ‘(i · 𝐴)) = 0))
159158biimpa 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (ℑ‘(i · 𝐴)) = 0)
160155, 159reim0bd 14553 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
161 tanhbnd 15508 . . . . . . . . . . . . . . . 16 ((i · 𝐴) ∈ ℝ → ((tan‘(i · (i · 𝐴))) / i) ∈ (-1(,)1))
162160, 161syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((tan‘(i · (i · 𝐴))) / i) ∈ (-1(,)1))
163154, 162eqeltrd 2890 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ (-1(,)1))
164133, 163sseldi 3913 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ ℝ)
165 readdcl 10611 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ (i · (tan‘𝐴)) ∈ ℝ) → (1 + (i · (tan‘𝐴))) ∈ ℝ)
166132, 164, 165sylancr 590 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 + (i · (tan‘𝐴))) ∈ ℝ)
167 df-neg 10864 . . . . . . . . . . . . . 14 -1 = (0 − 1)
168 eliooord 12786 . . . . . . . . . . . . . . . 16 ((i · (tan‘𝐴)) ∈ (-1(,)1) → (-1 < (i · (tan‘𝐴)) ∧ (i · (tan‘𝐴)) < 1))
169163, 168syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 < (i · (tan‘𝐴)) ∧ (i · (tan‘𝐴)) < 1))
170169simpld 498 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → -1 < (i · (tan‘𝐴)))
171167, 170eqbrtrrid 5066 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (0 − 1) < (i · (tan‘𝐴)))
172 0red 10635 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 0 ∈ ℝ)
173132a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 1 ∈ ℝ)
174172, 173, 164ltsubadd2d 11229 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((0 − 1) < (i · (tan‘𝐴)) ↔ 0 < (1 + (i · (tan‘𝐴)))))
175171, 174mpbid 235 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 0 < (1 + (i · (tan‘𝐴))))
176166, 175elrpd 12418 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 + (i · (tan‘𝐴))) ∈ ℝ+)
177176relogcld 25221 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (log‘(1 + (i · (tan‘𝐴)))) ∈ ℝ)
178169simprd 499 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) < 1)
179 difrp 12417 . . . . . . . . . . . . 13 (((i · (tan‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → ((i · (tan‘𝐴)) < 1 ↔ (1 − (i · (tan‘𝐴))) ∈ ℝ+))
180164, 132, 179sylancl 589 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · (tan‘𝐴)) < 1 ↔ (1 − (i · (tan‘𝐴))) ∈ ℝ+))
181178, 180mpbid 235 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 − (i · (tan‘𝐴))) ∈ ℝ+)
182181relogcld 25221 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (log‘(1 − (i · (tan‘𝐴)))) ∈ ℝ)
183177, 182resubcld 11059 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ℝ)
184 relogrn 25160 . . . . . . . . 9 (((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ℝ → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
185183, 184syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
18664adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
187186recld 14547 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
188 simpr 488 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
189102simprd 499 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < (π / 2))
190189adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) < (π / 2))
191 elioo2 12769 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2))))
192109, 110, 191mp2an 691 . . . . . . . . . . . 12 ((ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
193187, 188, 190, 192syl3anbrc 1340 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ (0(,)(π / 2)))
194 tanregt0 25138 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))
19564, 193, 194syl2an2r 684 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(tan‘𝐴)))
196195gt0ne0d 11195 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(tan‘𝐴)) ≠ 0)
1973, 196, 130syl2an2r 684 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
198 recl 14463 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
199198adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
200 0re 10634 . . . . . . . . 9 0 ∈ ℝ
201 lttri4 10716 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐴) < 0 ∨ (ℜ‘𝐴) = 0 ∨ 0 < (ℜ‘𝐴)))
202199, 200, 201sylancl 589 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) < 0 ∨ (ℜ‘𝐴) = 0 ∨ 0 < (ℜ‘𝐴)))
203131, 185, 197, 202mpjao3dan 1428 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
204 logef 25180 . . . . . . 7 (((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))
205203, 204syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))
206 2cn 11702 . . . . . . . . 9 2 ∈ ℂ
207 mulcl 10612 . . . . . . . . 9 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · (i · 𝐴)) ∈ ℂ)
208206, 76, 207sylancr 590 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) ∈ ℂ)
209 picn 25059 . . . . . . . . . . . 12 π ∈ ℂ
210 2ne0 11731 . . . . . . . . . . . 12 2 ≠ 0
211 divneg 11323 . . . . . . . . . . . 12 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
212209, 206, 210, 211mp3an 1458 . . . . . . . . . . 11 -(π / 2) = (-π / 2)
213212, 103eqbrtrrid 5066 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-π / 2) < (ℜ‘𝐴))
214 pire 25058 . . . . . . . . . . . . 13 π ∈ ℝ
215214renegcli 10938 . . . . . . . . . . . 12 -π ∈ ℝ
216215a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π ∈ ℝ)
217 2re 11701 . . . . . . . . . . . 12 2 ∈ ℝ
218217a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℝ)
219 2pos 11730 . . . . . . . . . . . 12 0 < 2
220219a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < 2)
221 ltdivmul 11506 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((-π / 2) < (ℜ‘𝐴) ↔ -π < (2 · (ℜ‘𝐴))))
222216, 199, 218, 220, 221syl112anc 1371 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((-π / 2) < (ℜ‘𝐴) ↔ -π < (2 · (ℜ‘𝐴))))
223213, 222mpbid 235 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (2 · (ℜ‘𝐴)))
224 immul2 14490 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℑ‘(i · 𝐴))))
225217, 76, 224sylancr 590 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℑ‘(i · 𝐴))))
226157oveq2d 7151 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) = (2 · (ℑ‘(i · 𝐴))))
227225, 226eqtr4d 2836 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℜ‘𝐴)))
228223, 227breqtrrd 5058 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℑ‘(2 · (i · 𝐴))))
229 remulcl 10613 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (2 · (ℜ‘𝐴)) ∈ ℝ)
230217, 199, 229sylancr 590 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) ∈ ℝ)
231214a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℝ)
232 ltmuldiv2 11505 . . . . . . . . . . . 12 (((ℜ‘𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (ℜ‘𝐴)) < π ↔ (ℜ‘𝐴) < (π / 2)))
233199, 231, 218, 220, 232syl112anc 1371 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((2 · (ℜ‘𝐴)) < π ↔ (ℜ‘𝐴) < (π / 2)))
234189, 233mpbird 260 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) < π)
235230, 231, 234ltled 10779 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) ≤ π)
236227, 235eqbrtrd 5052 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) ≤ π)
237 ellogrn 25158 . . . . . . . 8 ((2 · (i · 𝐴)) ∈ ran log ↔ ((2 · (i · 𝐴)) ∈ ℂ ∧ -π < (ℑ‘(2 · (i · 𝐴))) ∧ (ℑ‘(2 · (i · 𝐴))) ≤ π))
238208, 228, 236, 237syl3anbrc 1340 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) ∈ ran log)
239 logef 25180 . . . . . . 7 ((2 · (i · 𝐴)) ∈ ran log → (log‘(exp‘(2 · (i · 𝐴)))) = (2 · (i · 𝐴)))
240238, 239syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(2 · (i · 𝐴)))) = (2 · (i · 𝐴)))
24193, 205, 2403eqtr3d 2841 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = (2 · (i · 𝐴)))
242241negeqd 10871 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = -(2 · (i · 𝐴)))
24322, 242eqtr3d 2835 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴))))) = -(2 · (i · 𝐴)))
244243oveq2d 7151 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))) = ((i / 2) · -(2 · (i · 𝐴))))
245 halfcl 11852 . . . . 5 (i ∈ ℂ → (i / 2) ∈ ℂ)
2467, 245mp1i 13 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i / 2) ∈ ℂ)
247206a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℂ)
248246, 247, 79mulassd 10655 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((i / 2) · 2) · -(i · 𝐴)) = ((i / 2) · (2 · -(i · 𝐴))))
2497, 206, 210divcan1i 11375 . . . . 5 ((i / 2) · 2) = i
250249oveq1i 7145 . . . 4 (((i / 2) · 2) · -(i · 𝐴)) = (i · -(i · 𝐴))
25133, 33, 51mulassd 10655 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · i) · -𝐴) = (i · (i · -𝐴)))
252138oveq1i 7145 . . . . . 6 ((i · i) · -𝐴) = (-1 · -𝐴)
253 mul2neg 11070 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-1 · -𝐴) = (1 · 𝐴))
2546, 64, 253sylancr 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · -𝐴) = (1 · 𝐴))
255 mulid2 10631 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
256255adantr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 · 𝐴) = 𝐴)
257254, 256eqtrd 2833 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · -𝐴) = 𝐴)
258252, 257syl5eq 2845 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · i) · -𝐴) = 𝐴)
25966oveq2d 7151 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (i · -𝐴)) = (i · -(i · 𝐴)))
260251, 258, 2593eqtr3rd 2842 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -(i · 𝐴)) = 𝐴)
261250, 260syl5eq 2845 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((i / 2) · 2) · -(i · 𝐴)) = 𝐴)
262 mulneg2 11068 . . . . 5 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · -(i · 𝐴)) = -(2 · (i · 𝐴)))
263206, 76, 262sylancr 590 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · -(i · 𝐴)) = -(2 · (i · 𝐴)))
264263oveq2d 7151 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · (2 · -(i · 𝐴))) = ((i / 2) · -(2 · (i · 𝐴))))
265248, 261, 2643eqtr3rd 2842 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · -(2 · (i · 𝐴))) = 𝐴)
2665, 244, 2653eqtrd 2837 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ w3o 1083   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   class class class wbr 5030  dom cdm 5519  ran crn 5520  ‘cfv 6324  (class class class)co 7135  ℂcc 10526  ℝcr 10527  0cc0 10528  1c1 10529  ici 10530   + caddc 10531   · cmul 10533  ℝ*cxr 10665   < clt 10666   ≤ cle 10667   − cmin 10861  -cneg 10862   / cdiv 11288  2c2 11682  ℝ+crp 12379  (,)cioo 12728  ℜcre 14450  ℑcim 14451  expce 15409  sincsin 15411  cosccos 15412  tanctan 15413  πcpi 15414  logclog 25153  arctancatan 25457 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-inf2 9090  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606  ax-addf 10607  ax-mulf 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-om 7563  df-1st 7673  df-2nd 7674  df-supp 7816  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-q 12339  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12888  df-fzo 13031  df-fl 13159  df-mod 13235  df-seq 13367  df-exp 13428  df-fac 13632  df-bc 13661  df-hash 13689  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-tan 15419  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21506  df-topon 21523  df-topsp 21545  df-bases 21558  df-cld 21631  df-ntr 21632  df-cls 21633  df-nei 21710  df-lp 21748  df-perf 21749  df-cn 21839  df-cnp 21840  df-haus 21927  df-tx 22174  df-hmeo 22367  df-fil 22458  df-fm 22550  df-flim 22551  df-flf 22552  df-xms 22934  df-ms 22935  df-tms 22936  df-cncf 23490  df-limc 24476  df-dv 24477  df-log 25155  df-atan 25460 This theorem is referenced by:  atantanb  25517  atan1  25521
 Copyright terms: Public domain W3C validator