MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantan Structured version   Visualization version   GIF version

Theorem atantan 26861
Description: The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atantan ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴)

Proof of Theorem atantan
StepHypRef Expression
1 cosne0 26466 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
2 atandmtan 26858 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan)
31, 2syldan 591 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) ∈ dom arctan)
4 atanval 26822 . . 3 ((tan‘𝐴) ∈ dom arctan → (arctan‘(tan‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))))
53, 4syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))))
6 ax-1cn 11071 . . . . . . 7 1 ∈ ℂ
7 ax-icn 11072 . . . . . . . 8 i ∈ ℂ
8 tancl 16040 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ)
91, 8syldan 591 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) ∈ ℂ)
10 mulcl 11097 . . . . . . . 8 ((i ∈ ℂ ∧ (tan‘𝐴) ∈ ℂ) → (i · (tan‘𝐴)) ∈ ℂ)
117, 9, 10sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (tan‘𝐴)) ∈ ℂ)
12 addcl 11095 . . . . . . 7 ((1 ∈ ℂ ∧ (i · (tan‘𝐴)) ∈ ℂ) → (1 + (i · (tan‘𝐴))) ∈ ℂ)
136, 11, 12sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + (i · (tan‘𝐴))) ∈ ℂ)
14 atandm2 26815 . . . . . . . 8 ((tan‘𝐴) ∈ dom arctan ↔ ((tan‘𝐴) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0 ∧ (1 + (i · (tan‘𝐴))) ≠ 0))
153, 14sylib 218 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((tan‘𝐴) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0 ∧ (1 + (i · (tan‘𝐴))) ≠ 0))
1615simp3d 1144 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + (i · (tan‘𝐴))) ≠ 0)
1713, 16logcld 26507 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(1 + (i · (tan‘𝐴)))) ∈ ℂ)
18 subcl 11366 . . . . . . 7 ((1 ∈ ℂ ∧ (i · (tan‘𝐴)) ∈ ℂ) → (1 − (i · (tan‘𝐴))) ∈ ℂ)
196, 11, 18sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − (i · (tan‘𝐴))) ∈ ℂ)
2015simp2d 1143 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − (i · (tan‘𝐴))) ≠ 0)
2119, 20logcld 26507 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(1 − (i · (tan‘𝐴)))) ∈ ℂ)
2217, 21negsubdi2d 11495 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴))))))
23 efsub 16011 . . . . . . . . 9 (((log‘(1 + (i · (tan‘𝐴)))) ∈ ℂ ∧ (log‘(1 − (i · (tan‘𝐴)))) ∈ ℂ) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
2417, 21, 23syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
25 coscl 16038 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2625adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ∈ ℂ)
27 sincl 16037 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
2827adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘𝐴) ∈ ℂ)
29 mulcl 11097 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
307, 28, 29sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘𝐴)) ∈ ℂ)
3126, 30, 26, 1divdird 11942 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)) = (((cos‘𝐴) / (cos‘𝐴)) + ((i · (sin‘𝐴)) / (cos‘𝐴))))
3226, 1dividd 11902 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴) / (cos‘𝐴)) = 1)
337a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → i ∈ ℂ)
3433, 28, 26, 1divassd 11939 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) / (cos‘𝐴)) = (i · ((sin‘𝐴) / (cos‘𝐴))))
35 tanval 16039 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
361, 35syldan 591 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
3736oveq2d 7368 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (tan‘𝐴)) = (i · ((sin‘𝐴) / (cos‘𝐴))))
3834, 37eqtr4d 2771 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) / (cos‘𝐴)) = (i · (tan‘𝐴)))
3932, 38oveq12d 7370 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) / (cos‘𝐴)) + ((i · (sin‘𝐴)) / (cos‘𝐴))) = (1 + (i · (tan‘𝐴))))
4031, 39eqtrd 2768 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)) = (1 + (i · (tan‘𝐴))))
41 efival 16063 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4241adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4342oveq1d 7367 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) / (cos‘𝐴)) = (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)))
44 eflog 26513 . . . . . . . . . . 11 (((1 + (i · (tan‘𝐴))) ∈ ℂ ∧ (1 + (i · (tan‘𝐴))) ≠ 0) → (exp‘(log‘(1 + (i · (tan‘𝐴))))) = (1 + (i · (tan‘𝐴))))
4513, 16, 44syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(log‘(1 + (i · (tan‘𝐴))))) = (1 + (i · (tan‘𝐴))))
4640, 43, 453eqtr4d 2778 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) / (cos‘𝐴)) = (exp‘(log‘(1 + (i · (tan‘𝐴))))))
4726, 30, 26, 1divsubdird 11943 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)) = (((cos‘𝐴) / (cos‘𝐴)) − ((i · (sin‘𝐴)) / (cos‘𝐴))))
4832, 38oveq12d 7370 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) / (cos‘𝐴)) − ((i · (sin‘𝐴)) / (cos‘𝐴))) = (1 − (i · (tan‘𝐴))))
4947, 48eqtrd 2768 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)) = (1 − (i · (tan‘𝐴))))
50 negcl 11367 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
5150adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -𝐴 ∈ ℂ)
52 efival 16063 . . . . . . . . . . . . . 14 (-𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
5351, 52syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
54 cosneg 16058 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
5554adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘-𝐴) = (cos‘𝐴))
56 sinneg 16057 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
5756adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘-𝐴) = -(sin‘𝐴))
5857oveq2d 7368 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘-𝐴)) = (i · -(sin‘𝐴)))
59 mulneg2 11561 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
607, 28, 59sylancr 587 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
6158, 60eqtrd 2768 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘-𝐴)) = -(i · (sin‘𝐴)))
6255, 61oveq12d 7370 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘-𝐴) + (i · (sin‘-𝐴))) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
6353, 62eqtrd 2768 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
64 simpl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
65 mulneg2 11561 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
667, 64, 65sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -𝐴) = -(i · 𝐴))
6766fveq2d 6832 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = (exp‘-(i · 𝐴)))
6826, 30negsubd 11485 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴) + -(i · (sin‘𝐴))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
6963, 67, 683eqtr3d 2776 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
7069oveq1d 7367 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘-(i · 𝐴)) / (cos‘𝐴)) = (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)))
71 eflog 26513 . . . . . . . . . . 11 (((1 − (i · (tan‘𝐴))) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0) → (exp‘(log‘(1 − (i · (tan‘𝐴))))) = (1 − (i · (tan‘𝐴))))
7219, 20, 71syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(log‘(1 − (i · (tan‘𝐴))))) = (1 − (i · (tan‘𝐴))))
7349, 70, 723eqtr4d 2778 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘-(i · 𝐴)) / (cos‘𝐴)) = (exp‘(log‘(1 − (i · (tan‘𝐴))))))
7446, 73oveq12d 7370 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
75 mulcl 11097 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
767, 64, 75sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ℂ)
77 efcl 15991 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
7876, 77syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) ∈ ℂ)
7976negcld 11466 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(i · 𝐴) ∈ ℂ)
80 efcl 15991 . . . . . . . . . . 11 (-(i · 𝐴) ∈ ℂ → (exp‘-(i · 𝐴)) ∈ ℂ)
8179, 80syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) ∈ ℂ)
82 efne0 16007 . . . . . . . . . . 11 (-(i · 𝐴) ∈ ℂ → (exp‘-(i · 𝐴)) ≠ 0)
8379, 82syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) ≠ 0)
8478, 81, 26, 83, 1divcan7d 11932 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
85 efsub 16011 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ -(i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) − -(i · 𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
8676, 79, 85syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((i · 𝐴) − -(i · 𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
8776, 76subnegd 11486 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · 𝐴) − -(i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
88762timesd 12371 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
8987, 88eqtr4d 2771 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · 𝐴) − -(i · 𝐴)) = (2 · (i · 𝐴)))
9089fveq2d 6832 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((i · 𝐴) − -(i · 𝐴))) = (exp‘(2 · (i · 𝐴))))
9184, 86, 903eqtr2d 2774 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = (exp‘(2 · (i · 𝐴))))
9224, 74, 913eqtr2d 2774 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = (exp‘(2 · (i · 𝐴))))
9392fveq2d 6832 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = (log‘(exp‘(2 · (i · 𝐴)))))
9464adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 𝐴 ∈ ℂ)
9594renegd 15118 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
9694recld 15103 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘𝐴) ∈ ℝ)
9796renegcld 11551 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) ∈ ℝ)
98 simpr 484 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘𝐴) < 0)
9996lt0neg1d 11693 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((ℜ‘𝐴) < 0 ↔ 0 < -(ℜ‘𝐴)))
10098, 99mpbid 232 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘𝐴))
101 eliooord 13307 . . . . . . . . . . . . . . . . . . 19 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
102101adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
103102simpld 494 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) < (ℜ‘𝐴))
104103adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(π / 2) < (ℜ‘𝐴))
105 halfpire 26401 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
106 ltnegcon1 11625 . . . . . . . . . . . . . . . . 17 (((π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (-(π / 2) < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < (π / 2)))
107105, 96, 106sylancr 587 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (-(π / 2) < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < (π / 2)))
108104, 107mpbid 232 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) < (π / 2))
109 0xr 11166 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
110105rexri 11177 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ*
111 elioo2 13288 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-(ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ (-(ℜ‘𝐴) ∈ ℝ ∧ 0 < -(ℜ‘𝐴) ∧ -(ℜ‘𝐴) < (π / 2))))
112109, 110, 111mp2an 692 . . . . . . . . . . . . . . 15 (-(ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ (-(ℜ‘𝐴) ∈ ℝ ∧ 0 < -(ℜ‘𝐴) ∧ -(ℜ‘𝐴) < (π / 2)))
11397, 100, 108, 112syl3anbrc 1344 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) ∈ (0(,)(π / 2)))
11495, 113eqeltrd 2833 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) ∈ (0(,)(π / 2)))
115 tanregt0 26476 . . . . . . . . . . . . 13 ((-𝐴 ∈ ℂ ∧ (ℜ‘-𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘-𝐴)))
11651, 114, 115syl2an2r 685 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < (ℜ‘(tan‘-𝐴)))
117 tanneg 16059 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴))
1181, 117syldan 591 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘-𝐴) = -(tan‘𝐴))
119118adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (tan‘-𝐴) = -(tan‘𝐴))
120119fveq2d 6832 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘-𝐴)) = (ℜ‘-(tan‘𝐴)))
1219adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (tan‘𝐴) ∈ ℂ)
122121renegd 15118 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-(tan‘𝐴)) = -(ℜ‘(tan‘𝐴)))
123120, 122eqtrd 2768 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘-𝐴)) = -(ℜ‘(tan‘𝐴)))
124116, 123breqtrd 5119 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘(tan‘𝐴)))
1259recld 15103 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(tan‘𝐴)) ∈ ℝ)
126125adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) ∈ ℝ)
127126lt0neg1d 11693 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((ℜ‘(tan‘𝐴)) < 0 ↔ 0 < -(ℜ‘(tan‘𝐴))))
128124, 127mpbird 257 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) < 0)
129128lt0ne0d 11689 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) ≠ 0)
130 atanlogsub 26854 . . . . . . . . 9 (((tan‘𝐴) ∈ dom arctan ∧ (ℜ‘(tan‘𝐴)) ≠ 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
1313, 129, 130syl2an2r 685 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
132 1re 11119 . . . . . . . . . . . . 13 1 ∈ ℝ
133 ioossre 13309 . . . . . . . . . . . . . 14 (-1(,)1) ⊆ ℝ
1347a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → i ∈ ℂ)
13511adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ ℂ)
136 ine0 11559 . . . . . . . . . . . . . . . . 17 i ≠ 0
137136a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → i ≠ 0)
138 ixi 11753 . . . . . . . . . . . . . . . . . . 19 (i · i) = -1
139138oveq1i 7362 . . . . . . . . . . . . . . . . . 18 ((i · i) · (tan‘𝐴)) = (-1 · (tan‘𝐴))
1409adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘𝐴) ∈ ℂ)
141140mulm1d 11576 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · (tan‘𝐴)) = -(tan‘𝐴))
142118adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘-𝐴) = -(tan‘𝐴))
143141, 142eqtr4d 2771 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · (tan‘𝐴)) = (tan‘-𝐴))
144139, 143eqtrid 2780 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · (tan‘𝐴)) = (tan‘-𝐴))
145134, 134, 140mulassd 11142 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · (tan‘𝐴)) = (i · (i · (tan‘𝐴))))
146138oveq1i 7362 . . . . . . . . . . . . . . . . . . . 20 ((i · i) · 𝐴) = (-1 · 𝐴)
14764adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 𝐴 ∈ ℂ)
148147mulm1d 11576 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · 𝐴) = -𝐴)
149146, 148eqtrid 2780 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · 𝐴) = -𝐴)
150134, 134, 147mulassd 11142 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
151149, 150eqtr3d 2770 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → -𝐴 = (i · (i · 𝐴)))
152151fveq2d 6832 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘-𝐴) = (tan‘(i · (i · 𝐴))))
153144, 145, 1523eqtr3d 2776 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (i · (tan‘𝐴))) = (tan‘(i · (i · 𝐴))))
154134, 135, 137, 153mvllmuld 11960 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) = ((tan‘(i · (i · 𝐴))) / i))
15576adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℂ)
156 reim 15018 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
157156adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
158157eqeq1d 2735 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) = 0 ↔ (ℑ‘(i · 𝐴)) = 0))
159158biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (ℑ‘(i · 𝐴)) = 0)
160155, 159reim0bd 15109 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
161 tanhbnd 16072 . . . . . . . . . . . . . . . 16 ((i · 𝐴) ∈ ℝ → ((tan‘(i · (i · 𝐴))) / i) ∈ (-1(,)1))
162160, 161syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((tan‘(i · (i · 𝐴))) / i) ∈ (-1(,)1))
163154, 162eqeltrd 2833 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ (-1(,)1))
164133, 163sselid 3928 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ ℝ)
165 readdcl 11096 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ (i · (tan‘𝐴)) ∈ ℝ) → (1 + (i · (tan‘𝐴))) ∈ ℝ)
166132, 164, 165sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 + (i · (tan‘𝐴))) ∈ ℝ)
167 df-neg 11354 . . . . . . . . . . . . . 14 -1 = (0 − 1)
168 eliooord 13307 . . . . . . . . . . . . . . . 16 ((i · (tan‘𝐴)) ∈ (-1(,)1) → (-1 < (i · (tan‘𝐴)) ∧ (i · (tan‘𝐴)) < 1))
169163, 168syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 < (i · (tan‘𝐴)) ∧ (i · (tan‘𝐴)) < 1))
170169simpld 494 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → -1 < (i · (tan‘𝐴)))
171167, 170eqbrtrrid 5129 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (0 − 1) < (i · (tan‘𝐴)))
172 0red 11122 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 0 ∈ ℝ)
173132a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 1 ∈ ℝ)
174172, 173, 164ltsubadd2d 11722 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((0 − 1) < (i · (tan‘𝐴)) ↔ 0 < (1 + (i · (tan‘𝐴)))))
175171, 174mpbid 232 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 0 < (1 + (i · (tan‘𝐴))))
176166, 175elrpd 12933 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 + (i · (tan‘𝐴))) ∈ ℝ+)
177176relogcld 26560 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (log‘(1 + (i · (tan‘𝐴)))) ∈ ℝ)
178169simprd 495 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) < 1)
179 difrp 12932 . . . . . . . . . . . . 13 (((i · (tan‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → ((i · (tan‘𝐴)) < 1 ↔ (1 − (i · (tan‘𝐴))) ∈ ℝ+))
180164, 132, 179sylancl 586 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · (tan‘𝐴)) < 1 ↔ (1 − (i · (tan‘𝐴))) ∈ ℝ+))
181178, 180mpbid 232 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 − (i · (tan‘𝐴))) ∈ ℝ+)
182181relogcld 26560 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (log‘(1 − (i · (tan‘𝐴)))) ∈ ℝ)
183177, 182resubcld 11552 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ℝ)
184 relogrn 26498 . . . . . . . . 9 (((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ℝ → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
185183, 184syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
18664adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
187186recld 15103 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
188 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
189102simprd 495 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < (π / 2))
190189adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) < (π / 2))
191 elioo2 13288 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2))))
192109, 110, 191mp2an 692 . . . . . . . . . . . 12 ((ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
193187, 188, 190, 192syl3anbrc 1344 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ (0(,)(π / 2)))
194 tanregt0 26476 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))
19564, 193, 194syl2an2r 685 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(tan‘𝐴)))
196195gt0ne0d 11688 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(tan‘𝐴)) ≠ 0)
1973, 196, 130syl2an2r 685 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
198 recl 15019 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
199198adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
200 0re 11121 . . . . . . . . 9 0 ∈ ℝ
201 lttri4 11204 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐴) < 0 ∨ (ℜ‘𝐴) = 0 ∨ 0 < (ℜ‘𝐴)))
202199, 200, 201sylancl 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) < 0 ∨ (ℜ‘𝐴) = 0 ∨ 0 < (ℜ‘𝐴)))
203131, 185, 197, 202mpjao3dan 1434 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
204 logef 26518 . . . . . . 7 (((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))
205203, 204syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))
206 2cn 12207 . . . . . . . . 9 2 ∈ ℂ
207 mulcl 11097 . . . . . . . . 9 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · (i · 𝐴)) ∈ ℂ)
208206, 76, 207sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) ∈ ℂ)
209 picn 26395 . . . . . . . . . . . 12 π ∈ ℂ
210 2ne0 12236 . . . . . . . . . . . 12 2 ≠ 0
211 divneg 11820 . . . . . . . . . . . 12 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
212209, 206, 210, 211mp3an 1463 . . . . . . . . . . 11 -(π / 2) = (-π / 2)
213212, 103eqbrtrrid 5129 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-π / 2) < (ℜ‘𝐴))
214 pire 26394 . . . . . . . . . . . . 13 π ∈ ℝ
215214renegcli 11429 . . . . . . . . . . . 12 -π ∈ ℝ
216215a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π ∈ ℝ)
217 2re 12206 . . . . . . . . . . . 12 2 ∈ ℝ
218217a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℝ)
219 2pos 12235 . . . . . . . . . . . 12 0 < 2
220219a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < 2)
221 ltdivmul 12004 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((-π / 2) < (ℜ‘𝐴) ↔ -π < (2 · (ℜ‘𝐴))))
222216, 199, 218, 220, 221syl112anc 1376 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((-π / 2) < (ℜ‘𝐴) ↔ -π < (2 · (ℜ‘𝐴))))
223213, 222mpbid 232 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (2 · (ℜ‘𝐴)))
224 immul2 15046 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℑ‘(i · 𝐴))))
225217, 76, 224sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℑ‘(i · 𝐴))))
226157oveq2d 7368 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) = (2 · (ℑ‘(i · 𝐴))))
227225, 226eqtr4d 2771 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℜ‘𝐴)))
228223, 227breqtrrd 5121 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℑ‘(2 · (i · 𝐴))))
229 remulcl 11098 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (2 · (ℜ‘𝐴)) ∈ ℝ)
230217, 199, 229sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) ∈ ℝ)
231214a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℝ)
232 ltmuldiv2 12003 . . . . . . . . . . . 12 (((ℜ‘𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (ℜ‘𝐴)) < π ↔ (ℜ‘𝐴) < (π / 2)))
233199, 231, 218, 220, 232syl112anc 1376 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((2 · (ℜ‘𝐴)) < π ↔ (ℜ‘𝐴) < (π / 2)))
234189, 233mpbird 257 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) < π)
235230, 231, 234ltled 11268 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) ≤ π)
236227, 235eqbrtrd 5115 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) ≤ π)
237 ellogrn 26496 . . . . . . . 8 ((2 · (i · 𝐴)) ∈ ran log ↔ ((2 · (i · 𝐴)) ∈ ℂ ∧ -π < (ℑ‘(2 · (i · 𝐴))) ∧ (ℑ‘(2 · (i · 𝐴))) ≤ π))
238208, 228, 236, 237syl3anbrc 1344 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) ∈ ran log)
239 logef 26518 . . . . . . 7 ((2 · (i · 𝐴)) ∈ ran log → (log‘(exp‘(2 · (i · 𝐴)))) = (2 · (i · 𝐴)))
240238, 239syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(2 · (i · 𝐴)))) = (2 · (i · 𝐴)))
24193, 205, 2403eqtr3d 2776 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = (2 · (i · 𝐴)))
242241negeqd 11361 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = -(2 · (i · 𝐴)))
24322, 242eqtr3d 2770 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴))))) = -(2 · (i · 𝐴)))
244243oveq2d 7368 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))) = ((i / 2) · -(2 · (i · 𝐴))))
245 halfcl 12354 . . . . 5 (i ∈ ℂ → (i / 2) ∈ ℂ)
2467, 245mp1i 13 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i / 2) ∈ ℂ)
247206a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℂ)
248246, 247, 79mulassd 11142 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((i / 2) · 2) · -(i · 𝐴)) = ((i / 2) · (2 · -(i · 𝐴))))
2497, 206, 210divcan1i 11872 . . . . 5 ((i / 2) · 2) = i
250249oveq1i 7362 . . . 4 (((i / 2) · 2) · -(i · 𝐴)) = (i · -(i · 𝐴))
25133, 33, 51mulassd 11142 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · i) · -𝐴) = (i · (i · -𝐴)))
252138oveq1i 7362 . . . . . 6 ((i · i) · -𝐴) = (-1 · -𝐴)
253 mul2neg 11563 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-1 · -𝐴) = (1 · 𝐴))
2546, 64, 253sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · -𝐴) = (1 · 𝐴))
255 mullid 11118 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
256255adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 · 𝐴) = 𝐴)
257254, 256eqtrd 2768 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · -𝐴) = 𝐴)
258252, 257eqtrid 2780 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · i) · -𝐴) = 𝐴)
25966oveq2d 7368 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (i · -𝐴)) = (i · -(i · 𝐴)))
260251, 258, 2593eqtr3rd 2777 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -(i · 𝐴)) = 𝐴)
261250, 260eqtrid 2780 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((i / 2) · 2) · -(i · 𝐴)) = 𝐴)
262 mulneg2 11561 . . . . 5 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · -(i · 𝐴)) = -(2 · (i · 𝐴)))
263206, 76, 262sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · -(i · 𝐴)) = -(2 · (i · 𝐴)))
264263oveq2d 7368 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · (2 · -(i · 𝐴))) = ((i / 2) · -(2 · (i · 𝐴))))
265248, 261, 2643eqtr3rd 2777 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · -(2 · (i · 𝐴))) = 𝐴)
2665, 244, 2653eqtrd 2772 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  dom cdm 5619  ran crn 5620  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014  ici 11015   + caddc 11016   · cmul 11018  *cxr 11152   < clt 11153  cle 11154  cmin 11351  -cneg 11352   / cdiv 11781  2c2 12187  +crp 12892  (,)cioo 13247  cre 15006  cim 15007  expce 15970  sincsin 15972  cosccos 15973  tanctan 15974  πcpi 15975  logclog 26491  arctancatan 26802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-tan 15980  df-pi 15981  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-atan 26805
This theorem is referenced by:  atantanb  26862  atan1  26866
  Copyright terms: Public domain W3C validator