MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantan Structured version   Visualization version   GIF version

Theorem atantan 25217
Description: The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atantan ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴)

Proof of Theorem atantan
StepHypRef Expression
1 cosne0 24830 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
2 atandmtan 25214 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan)
31, 2syldan 583 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) ∈ dom arctan)
4 atanval 25178 . . 3 ((tan‘𝐴) ∈ dom arctan → (arctan‘(tan‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))))
53, 4syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))))
6 ax-1cn 10399 . . . . . . 7 1 ∈ ℂ
7 ax-icn 10400 . . . . . . . 8 i ∈ ℂ
8 tancl 15348 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ)
91, 8syldan 583 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) ∈ ℂ)
10 mulcl 10425 . . . . . . . 8 ((i ∈ ℂ ∧ (tan‘𝐴) ∈ ℂ) → (i · (tan‘𝐴)) ∈ ℂ)
117, 9, 10sylancr 579 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (tan‘𝐴)) ∈ ℂ)
12 addcl 10423 . . . . . . 7 ((1 ∈ ℂ ∧ (i · (tan‘𝐴)) ∈ ℂ) → (1 + (i · (tan‘𝐴))) ∈ ℂ)
136, 11, 12sylancr 579 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + (i · (tan‘𝐴))) ∈ ℂ)
14 atandm2 25171 . . . . . . . 8 ((tan‘𝐴) ∈ dom arctan ↔ ((tan‘𝐴) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0 ∧ (1 + (i · (tan‘𝐴))) ≠ 0))
153, 14sylib 210 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((tan‘𝐴) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0 ∧ (1 + (i · (tan‘𝐴))) ≠ 0))
1615simp3d 1125 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + (i · (tan‘𝐴))) ≠ 0)
1713, 16logcld 24870 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(1 + (i · (tan‘𝐴)))) ∈ ℂ)
18 subcl 10691 . . . . . . 7 ((1 ∈ ℂ ∧ (i · (tan‘𝐴)) ∈ ℂ) → (1 − (i · (tan‘𝐴))) ∈ ℂ)
196, 11, 18sylancr 579 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − (i · (tan‘𝐴))) ∈ ℂ)
2015simp2d 1124 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − (i · (tan‘𝐴))) ≠ 0)
2119, 20logcld 24870 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(1 − (i · (tan‘𝐴)))) ∈ ℂ)
2217, 21negsubdi2d 10820 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴))))))
23 efsub 15319 . . . . . . . . 9 (((log‘(1 + (i · (tan‘𝐴)))) ∈ ℂ ∧ (log‘(1 − (i · (tan‘𝐴)))) ∈ ℂ) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
2417, 21, 23syl2anc 576 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
25 coscl 15346 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2625adantr 473 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ∈ ℂ)
27 sincl 15345 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
2827adantr 473 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘𝐴) ∈ ℂ)
29 mulcl 10425 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
307, 28, 29sylancr 579 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘𝐴)) ∈ ℂ)
3126, 30, 26, 1divdird 11261 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)) = (((cos‘𝐴) / (cos‘𝐴)) + ((i · (sin‘𝐴)) / (cos‘𝐴))))
3226, 1dividd 11221 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴) / (cos‘𝐴)) = 1)
337a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → i ∈ ℂ)
3433, 28, 26, 1divassd 11258 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) / (cos‘𝐴)) = (i · ((sin‘𝐴) / (cos‘𝐴))))
35 tanval 15347 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
361, 35syldan 583 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
3736oveq2d 6998 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (tan‘𝐴)) = (i · ((sin‘𝐴) / (cos‘𝐴))))
3834, 37eqtr4d 2819 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) / (cos‘𝐴)) = (i · (tan‘𝐴)))
3932, 38oveq12d 7000 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) / (cos‘𝐴)) + ((i · (sin‘𝐴)) / (cos‘𝐴))) = (1 + (i · (tan‘𝐴))))
4031, 39eqtrd 2816 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)) = (1 + (i · (tan‘𝐴))))
41 efival 15371 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4241adantr 473 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4342oveq1d 6997 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) / (cos‘𝐴)) = (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)))
44 eflog 24876 . . . . . . . . . . 11 (((1 + (i · (tan‘𝐴))) ∈ ℂ ∧ (1 + (i · (tan‘𝐴))) ≠ 0) → (exp‘(log‘(1 + (i · (tan‘𝐴))))) = (1 + (i · (tan‘𝐴))))
4513, 16, 44syl2anc 576 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(log‘(1 + (i · (tan‘𝐴))))) = (1 + (i · (tan‘𝐴))))
4640, 43, 453eqtr4d 2826 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) / (cos‘𝐴)) = (exp‘(log‘(1 + (i · (tan‘𝐴))))))
4726, 30, 26, 1divsubdird 11262 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)) = (((cos‘𝐴) / (cos‘𝐴)) − ((i · (sin‘𝐴)) / (cos‘𝐴))))
4832, 38oveq12d 7000 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) / (cos‘𝐴)) − ((i · (sin‘𝐴)) / (cos‘𝐴))) = (1 − (i · (tan‘𝐴))))
4947, 48eqtrd 2816 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)) = (1 − (i · (tan‘𝐴))))
50 negcl 10692 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
5150adantr 473 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -𝐴 ∈ ℂ)
52 efival 15371 . . . . . . . . . . . . . 14 (-𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
5351, 52syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
54 cosneg 15366 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
5554adantr 473 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘-𝐴) = (cos‘𝐴))
56 sinneg 15365 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
5756adantr 473 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘-𝐴) = -(sin‘𝐴))
5857oveq2d 6998 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘-𝐴)) = (i · -(sin‘𝐴)))
59 mulneg2 10884 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
607, 28, 59sylancr 579 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
6158, 60eqtrd 2816 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘-𝐴)) = -(i · (sin‘𝐴)))
6255, 61oveq12d 7000 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘-𝐴) + (i · (sin‘-𝐴))) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
6353, 62eqtrd 2816 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
64 simpl 475 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
65 mulneg2 10884 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
667, 64, 65sylancr 579 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -𝐴) = -(i · 𝐴))
6766fveq2d 6508 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = (exp‘-(i · 𝐴)))
6826, 30negsubd 10810 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴) + -(i · (sin‘𝐴))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
6963, 67, 683eqtr3d 2824 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
7069oveq1d 6997 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘-(i · 𝐴)) / (cos‘𝐴)) = (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)))
71 eflog 24876 . . . . . . . . . . 11 (((1 − (i · (tan‘𝐴))) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0) → (exp‘(log‘(1 − (i · (tan‘𝐴))))) = (1 − (i · (tan‘𝐴))))
7219, 20, 71syl2anc 576 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(log‘(1 − (i · (tan‘𝐴))))) = (1 − (i · (tan‘𝐴))))
7349, 70, 723eqtr4d 2826 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘-(i · 𝐴)) / (cos‘𝐴)) = (exp‘(log‘(1 − (i · (tan‘𝐴))))))
7446, 73oveq12d 7000 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
75 mulcl 10425 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
767, 64, 75sylancr 579 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ℂ)
77 efcl 15302 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
7876, 77syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) ∈ ℂ)
7976negcld 10791 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(i · 𝐴) ∈ ℂ)
80 efcl 15302 . . . . . . . . . . 11 (-(i · 𝐴) ∈ ℂ → (exp‘-(i · 𝐴)) ∈ ℂ)
8179, 80syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) ∈ ℂ)
82 efne0 15316 . . . . . . . . . . 11 (-(i · 𝐴) ∈ ℂ → (exp‘-(i · 𝐴)) ≠ 0)
8379, 82syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) ≠ 0)
8478, 81, 26, 83, 1divcan7d 11251 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
85 efsub 15319 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ -(i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) − -(i · 𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
8676, 79, 85syl2anc 576 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((i · 𝐴) − -(i · 𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
8776, 76subnegd 10811 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · 𝐴) − -(i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
88762timesd 11696 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
8987, 88eqtr4d 2819 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · 𝐴) − -(i · 𝐴)) = (2 · (i · 𝐴)))
9089fveq2d 6508 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((i · 𝐴) − -(i · 𝐴))) = (exp‘(2 · (i · 𝐴))))
9184, 86, 903eqtr2d 2822 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = (exp‘(2 · (i · 𝐴))))
9224, 74, 913eqtr2d 2822 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = (exp‘(2 · (i · 𝐴))))
9392fveq2d 6508 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = (log‘(exp‘(2 · (i · 𝐴)))))
9464adantr 473 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 𝐴 ∈ ℂ)
9594renegd 14435 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
9694recld 14420 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘𝐴) ∈ ℝ)
9796renegcld 10874 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) ∈ ℝ)
98 simpr 477 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘𝐴) < 0)
9996lt0neg1d 11016 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((ℜ‘𝐴) < 0 ↔ 0 < -(ℜ‘𝐴)))
10098, 99mpbid 224 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘𝐴))
101 eliooord 12618 . . . . . . . . . . . . . . . . . . 19 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
102101adantl 474 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
103102simpld 487 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) < (ℜ‘𝐴))
104103adantr 473 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(π / 2) < (ℜ‘𝐴))
105 halfpire 24768 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
106 ltnegcon1 10948 . . . . . . . . . . . . . . . . 17 (((π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (-(π / 2) < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < (π / 2)))
107105, 96, 106sylancr 579 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (-(π / 2) < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < (π / 2)))
108104, 107mpbid 224 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) < (π / 2))
109 0xr 10493 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
110105rexri 10505 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ*
111 elioo2 12601 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-(ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ (-(ℜ‘𝐴) ∈ ℝ ∧ 0 < -(ℜ‘𝐴) ∧ -(ℜ‘𝐴) < (π / 2))))
112109, 110, 111mp2an 680 . . . . . . . . . . . . . . 15 (-(ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ (-(ℜ‘𝐴) ∈ ℝ ∧ 0 < -(ℜ‘𝐴) ∧ -(ℜ‘𝐴) < (π / 2)))
11397, 100, 108, 112syl3anbrc 1324 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) ∈ (0(,)(π / 2)))
11495, 113eqeltrd 2868 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) ∈ (0(,)(π / 2)))
115 tanregt0 24839 . . . . . . . . . . . . 13 ((-𝐴 ∈ ℂ ∧ (ℜ‘-𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘-𝐴)))
11651, 114, 115syl2an2r 673 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < (ℜ‘(tan‘-𝐴)))
117 tanneg 15367 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴))
1181, 117syldan 583 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘-𝐴) = -(tan‘𝐴))
119118adantr 473 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (tan‘-𝐴) = -(tan‘𝐴))
120119fveq2d 6508 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘-𝐴)) = (ℜ‘-(tan‘𝐴)))
1219adantr 473 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (tan‘𝐴) ∈ ℂ)
122121renegd 14435 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-(tan‘𝐴)) = -(ℜ‘(tan‘𝐴)))
123120, 122eqtrd 2816 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘-𝐴)) = -(ℜ‘(tan‘𝐴)))
124116, 123breqtrd 4960 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘(tan‘𝐴)))
1259recld 14420 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(tan‘𝐴)) ∈ ℝ)
126125adantr 473 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) ∈ ℝ)
127126lt0neg1d 11016 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((ℜ‘(tan‘𝐴)) < 0 ↔ 0 < -(ℜ‘(tan‘𝐴))))
128124, 127mpbird 249 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) < 0)
129128lt0ne0d 11012 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) ≠ 0)
130 atanlogsub 25210 . . . . . . . . 9 (((tan‘𝐴) ∈ dom arctan ∧ (ℜ‘(tan‘𝐴)) ≠ 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
1313, 129, 130syl2an2r 673 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
132 1re 10445 . . . . . . . . . . . . 13 1 ∈ ℝ
133 ioossre 12620 . . . . . . . . . . . . . 14 (-1(,)1) ⊆ ℝ
1347a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → i ∈ ℂ)
13511adantr 473 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ ℂ)
136 ine0 10882 . . . . . . . . . . . . . . . . 17 i ≠ 0
137136a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → i ≠ 0)
138 ixi 11076 . . . . . . . . . . . . . . . . . . 19 (i · i) = -1
139138oveq1i 6992 . . . . . . . . . . . . . . . . . 18 ((i · i) · (tan‘𝐴)) = (-1 · (tan‘𝐴))
1409adantr 473 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘𝐴) ∈ ℂ)
141140mulm1d 10899 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · (tan‘𝐴)) = -(tan‘𝐴))
142118adantr 473 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘-𝐴) = -(tan‘𝐴))
143141, 142eqtr4d 2819 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · (tan‘𝐴)) = (tan‘-𝐴))
144139, 143syl5eq 2828 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · (tan‘𝐴)) = (tan‘-𝐴))
145134, 134, 140mulassd 10469 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · (tan‘𝐴)) = (i · (i · (tan‘𝐴))))
146138oveq1i 6992 . . . . . . . . . . . . . . . . . . . 20 ((i · i) · 𝐴) = (-1 · 𝐴)
14764adantr 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 𝐴 ∈ ℂ)
148147mulm1d 10899 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · 𝐴) = -𝐴)
149146, 148syl5eq 2828 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · 𝐴) = -𝐴)
150134, 134, 147mulassd 10469 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
151149, 150eqtr3d 2818 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → -𝐴 = (i · (i · 𝐴)))
152151fveq2d 6508 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘-𝐴) = (tan‘(i · (i · 𝐴))))
153144, 145, 1523eqtr3d 2824 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (i · (tan‘𝐴))) = (tan‘(i · (i · 𝐴))))
154134, 135, 137, 153mvllmuld 11279 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) = ((tan‘(i · (i · 𝐴))) / i))
15576adantr 473 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℂ)
156 reim 14335 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
157156adantr 473 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
158157eqeq1d 2782 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) = 0 ↔ (ℑ‘(i · 𝐴)) = 0))
159158biimpa 469 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (ℑ‘(i · 𝐴)) = 0)
160155, 159reim0bd 14426 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
161 tanhbnd 15380 . . . . . . . . . . . . . . . 16 ((i · 𝐴) ∈ ℝ → ((tan‘(i · (i · 𝐴))) / i) ∈ (-1(,)1))
162160, 161syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((tan‘(i · (i · 𝐴))) / i) ∈ (-1(,)1))
163154, 162eqeltrd 2868 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ (-1(,)1))
164133, 163sseldi 3858 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ ℝ)
165 readdcl 10424 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ (i · (tan‘𝐴)) ∈ ℝ) → (1 + (i · (tan‘𝐴))) ∈ ℝ)
166132, 164, 165sylancr 579 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 + (i · (tan‘𝐴))) ∈ ℝ)
167 df-neg 10679 . . . . . . . . . . . . . 14 -1 = (0 − 1)
168 eliooord 12618 . . . . . . . . . . . . . . . 16 ((i · (tan‘𝐴)) ∈ (-1(,)1) → (-1 < (i · (tan‘𝐴)) ∧ (i · (tan‘𝐴)) < 1))
169163, 168syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 < (i · (tan‘𝐴)) ∧ (i · (tan‘𝐴)) < 1))
170169simpld 487 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → -1 < (i · (tan‘𝐴)))
171167, 170syl5eqbrr 4970 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (0 − 1) < (i · (tan‘𝐴)))
172 0red 10449 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 0 ∈ ℝ)
173132a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 1 ∈ ℝ)
174172, 173, 164ltsubadd2d 11045 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((0 − 1) < (i · (tan‘𝐴)) ↔ 0 < (1 + (i · (tan‘𝐴)))))
175171, 174mpbid 224 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 0 < (1 + (i · (tan‘𝐴))))
176166, 175elrpd 12251 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 + (i · (tan‘𝐴))) ∈ ℝ+)
177176relogcld 24922 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (log‘(1 + (i · (tan‘𝐴)))) ∈ ℝ)
178169simprd 488 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) < 1)
179 difrp 12250 . . . . . . . . . . . . 13 (((i · (tan‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → ((i · (tan‘𝐴)) < 1 ↔ (1 − (i · (tan‘𝐴))) ∈ ℝ+))
180164, 132, 179sylancl 578 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · (tan‘𝐴)) < 1 ↔ (1 − (i · (tan‘𝐴))) ∈ ℝ+))
181178, 180mpbid 224 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 − (i · (tan‘𝐴))) ∈ ℝ+)
182181relogcld 24922 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (log‘(1 − (i · (tan‘𝐴)))) ∈ ℝ)
183177, 182resubcld 10875 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ℝ)
184 relogrn 24861 . . . . . . . . 9 (((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ℝ → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
185183, 184syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
18664adantr 473 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
187186recld 14420 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
188 simpr 477 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
189102simprd 488 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < (π / 2))
190189adantr 473 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) < (π / 2))
191 elioo2 12601 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2))))
192109, 110, 191mp2an 680 . . . . . . . . . . . 12 ((ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
193187, 188, 190, 192syl3anbrc 1324 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ (0(,)(π / 2)))
194 tanregt0 24839 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))
19564, 193, 194syl2an2r 673 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(tan‘𝐴)))
196195gt0ne0d 11011 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(tan‘𝐴)) ≠ 0)
1973, 196, 130syl2an2r 673 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
198 recl 14336 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
199198adantr 473 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
200 0re 10447 . . . . . . . . 9 0 ∈ ℝ
201 lttri4 10531 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐴) < 0 ∨ (ℜ‘𝐴) = 0 ∨ 0 < (ℜ‘𝐴)))
202199, 200, 201sylancl 578 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) < 0 ∨ (ℜ‘𝐴) = 0 ∨ 0 < (ℜ‘𝐴)))
203131, 185, 197, 202mpjao3dan 1412 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
204 logef 24881 . . . . . . 7 (((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))
205203, 204syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))
206 2cn 11521 . . . . . . . . 9 2 ∈ ℂ
207 mulcl 10425 . . . . . . . . 9 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · (i · 𝐴)) ∈ ℂ)
208206, 76, 207sylancr 579 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) ∈ ℂ)
209 picn 24763 . . . . . . . . . . . 12 π ∈ ℂ
210 2ne0 11557 . . . . . . . . . . . 12 2 ≠ 0
211 divneg 11139 . . . . . . . . . . . 12 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
212209, 206, 210, 211mp3an 1441 . . . . . . . . . . 11 -(π / 2) = (-π / 2)
213212, 103syl5eqbrr 4970 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-π / 2) < (ℜ‘𝐴))
214 pire 24762 . . . . . . . . . . . . 13 π ∈ ℝ
215214renegcli 10754 . . . . . . . . . . . 12 -π ∈ ℝ
216215a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π ∈ ℝ)
217 2re 11520 . . . . . . . . . . . 12 2 ∈ ℝ
218217a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℝ)
219 2pos 11556 . . . . . . . . . . . 12 0 < 2
220219a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < 2)
221 ltdivmul 11322 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((-π / 2) < (ℜ‘𝐴) ↔ -π < (2 · (ℜ‘𝐴))))
222216, 199, 218, 220, 221syl112anc 1355 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((-π / 2) < (ℜ‘𝐴) ↔ -π < (2 · (ℜ‘𝐴))))
223213, 222mpbid 224 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (2 · (ℜ‘𝐴)))
224 immul2 14363 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℑ‘(i · 𝐴))))
225217, 76, 224sylancr 579 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℑ‘(i · 𝐴))))
226157oveq2d 6998 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) = (2 · (ℑ‘(i · 𝐴))))
227225, 226eqtr4d 2819 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℜ‘𝐴)))
228223, 227breqtrrd 4962 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℑ‘(2 · (i · 𝐴))))
229 remulcl 10426 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (2 · (ℜ‘𝐴)) ∈ ℝ)
230217, 199, 229sylancr 579 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) ∈ ℝ)
231214a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℝ)
232 ltmuldiv2 11321 . . . . . . . . . . . 12 (((ℜ‘𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (ℜ‘𝐴)) < π ↔ (ℜ‘𝐴) < (π / 2)))
233199, 231, 218, 220, 232syl112anc 1355 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((2 · (ℜ‘𝐴)) < π ↔ (ℜ‘𝐴) < (π / 2)))
234189, 233mpbird 249 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) < π)
235230, 231, 234ltled 10594 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) ≤ π)
236227, 235eqbrtrd 4956 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) ≤ π)
237 ellogrn 24859 . . . . . . . 8 ((2 · (i · 𝐴)) ∈ ran log ↔ ((2 · (i · 𝐴)) ∈ ℂ ∧ -π < (ℑ‘(2 · (i · 𝐴))) ∧ (ℑ‘(2 · (i · 𝐴))) ≤ π))
238208, 228, 236, 237syl3anbrc 1324 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) ∈ ran log)
239 logef 24881 . . . . . . 7 ((2 · (i · 𝐴)) ∈ ran log → (log‘(exp‘(2 · (i · 𝐴)))) = (2 · (i · 𝐴)))
240238, 239syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(2 · (i · 𝐴)))) = (2 · (i · 𝐴)))
24193, 205, 2403eqtr3d 2824 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = (2 · (i · 𝐴)))
242241negeqd 10686 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = -(2 · (i · 𝐴)))
24322, 242eqtr3d 2818 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴))))) = -(2 · (i · 𝐴)))
244243oveq2d 6998 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))) = ((i / 2) · -(2 · (i · 𝐴))))
245 halfcl 11678 . . . . 5 (i ∈ ℂ → (i / 2) ∈ ℂ)
2467, 245mp1i 13 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i / 2) ∈ ℂ)
247206a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℂ)
248246, 247, 79mulassd 10469 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((i / 2) · 2) · -(i · 𝐴)) = ((i / 2) · (2 · -(i · 𝐴))))
2497, 206, 210divcan1i 11191 . . . . 5 ((i / 2) · 2) = i
250249oveq1i 6992 . . . 4 (((i / 2) · 2) · -(i · 𝐴)) = (i · -(i · 𝐴))
25133, 33, 51mulassd 10469 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · i) · -𝐴) = (i · (i · -𝐴)))
252138oveq1i 6992 . . . . . 6 ((i · i) · -𝐴) = (-1 · -𝐴)
253 mul2neg 10886 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-1 · -𝐴) = (1 · 𝐴))
2546, 64, 253sylancr 579 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · -𝐴) = (1 · 𝐴))
255 mulid2 10444 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
256255adantr 473 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 · 𝐴) = 𝐴)
257254, 256eqtrd 2816 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · -𝐴) = 𝐴)
258252, 257syl5eq 2828 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · i) · -𝐴) = 𝐴)
25966oveq2d 6998 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (i · -𝐴)) = (i · -(i · 𝐴)))
260251, 258, 2593eqtr3rd 2825 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -(i · 𝐴)) = 𝐴)
261250, 260syl5eq 2828 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((i / 2) · 2) · -(i · 𝐴)) = 𝐴)
262 mulneg2 10884 . . . . 5 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · -(i · 𝐴)) = -(2 · (i · 𝐴)))
263206, 76, 262sylancr 579 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · -(i · 𝐴)) = -(2 · (i · 𝐴)))
264263oveq2d 6998 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · (2 · -(i · 𝐴))) = ((i / 2) · -(2 · (i · 𝐴))))
265248, 261, 2643eqtr3rd 2825 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · -(2 · (i · 𝐴))) = 𝐴)
2665, 244, 2653eqtrd 2820 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3o 1068  w3a 1069   = wceq 1508  wcel 2051  wne 2969   class class class wbr 4934  dom cdm 5411  ran crn 5412  cfv 6193  (class class class)co 6982  cc 10339  cr 10340  0cc0 10341  1c1 10342  ici 10343   + caddc 10344   · cmul 10346  *cxr 10479   < clt 10480  cle 10481  cmin 10676  -cneg 10677   / cdiv 11104  2c2 11501  +crp 12210  (,)cioo 12560  cre 14323  cim 14324  expce 15281  sincsin 15283  cosccos 15284  tanctan 15285  πcpi 15286  logclog 24854  arctancatan 25158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419  ax-addf 10420  ax-mulf 10421
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-iin 4800  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-om 7403  df-1st 7507  df-2nd 7508  df-supp 7640  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-2o 7912  df-oadd 7915  df-er 8095  df-map 8214  df-pm 8215  df-ixp 8266  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fsupp 8635  df-fi 8676  df-sup 8707  df-inf 8708  df-oi 8775  df-card 9168  df-cda 9394  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-z 11800  df-dec 11918  df-uz 12065  df-q 12169  df-rp 12211  df-xneg 12330  df-xadd 12331  df-xmul 12332  df-ioo 12564  df-ioc 12565  df-ico 12566  df-icc 12567  df-fz 12715  df-fzo 12856  df-fl 12983  df-mod 13059  df-seq 13191  df-exp 13251  df-fac 13455  df-bc 13484  df-hash 13512  df-shft 14293  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-limsup 14695  df-clim 14712  df-rlim 14713  df-sum 14910  df-ef 15287  df-sin 15289  df-cos 15290  df-tan 15291  df-pi 15292  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-ress 16353  df-plusg 16440  df-mulr 16441  df-starv 16442  df-sca 16443  df-vsca 16444  df-ip 16445  df-tset 16446  df-ple 16447  df-ds 16449  df-unif 16450  df-hom 16451  df-cco 16452  df-rest 16558  df-topn 16559  df-0g 16577  df-gsum 16578  df-topgen 16579  df-pt 16580  df-prds 16583  df-xrs 16637  df-qtop 16642  df-imas 16643  df-xps 16645  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-mulg 18024  df-cntz 18230  df-cmn 18680  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-fbas 20259  df-fg 20260  df-cnfld 20263  df-top 21221  df-topon 21238  df-topsp 21260  df-bases 21273  df-cld 21346  df-ntr 21347  df-cls 21348  df-nei 21425  df-lp 21463  df-perf 21464  df-cn 21554  df-cnp 21555  df-haus 21642  df-tx 21889  df-hmeo 22082  df-fil 22173  df-fm 22265  df-flim 22266  df-flf 22267  df-xms 22648  df-ms 22649  df-tms 22650  df-cncf 23204  df-limc 24182  df-dv 24183  df-log 24856  df-atan 25161
This theorem is referenced by:  atantanb  25218  atan1  25222
  Copyright terms: Public domain W3C validator