MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1lip1 Structured version   Visualization version   GIF version

Theorem c1lip1 24277
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
c1lip1.a (𝜑𝐴 ∈ ℝ)
c1lip1.b (𝜑𝐵 ∈ ℝ)
c1lip1.f (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
c1lip1.dv (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1lip1.cn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
c1lip1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑘   𝑥,𝐴,𝑦,𝑘   𝑥,𝐵,𝑦,𝑘   𝑥,𝐹,𝑦,𝑘

Proof of Theorem c1lip1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10492 . . . 4 0 ∈ ℝ
21ne0ii 4225 . . 3 ℝ ≠ ∅
3 ral0 4372 . . . . 5 𝑥 ∈ ∅ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))
4 c1lip1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
54rexrd 10540 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
6 c1lip1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
76rexrd 10540 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
8 icc0 12636 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
95, 7, 8syl2anc 584 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
109biimpar 478 . . . . . 6 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
1110raleqdv 3374 . . . . 5 ((𝜑𝐵 < 𝐴) → (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))) ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
123, 11mpbiri 259 . . . 4 ((𝜑𝐵 < 𝐴) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
1312ralrimivw 3149 . . 3 ((𝜑𝐵 < 𝐴) → ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
14 r19.2z 4356 . . 3 ((ℝ ≠ ∅ ∧ ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
152, 13, 14sylancr 587 . 2 ((𝜑𝐵 < 𝐴) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
164adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
176adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
18 simpr 485 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝐵)
19 c1lip1.f . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
2019adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐹 ∈ (ℂ ↑pm ℝ))
21 c1lip1.dv . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
2221adantr 481 . . . . 5 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
23 c1lip1.cn . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
2423adantr 481 . . . . 5 ((𝜑𝐴𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
25 eqid 2794 . . . . 5 sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
2616, 17, 18, 20, 22, 24, 25c1liplem1 24276 . . . 4 ((𝜑𝐴𝐵) → (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
27 oveq1 7026 . . . . . . . 8 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (𝑘 · (abs‘(𝑏𝑎))) = (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))
2827breq2d 4976 . . . . . . 7 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎)))))
2928imbi2d 342 . . . . . 6 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
30292ralbidv 3165 . . . . 5 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
3130rspcev 3557 . . . 4 ((sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))))
3226, 31syl 17 . . 3 ((𝜑𝐴𝐵) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))))
33 breq1 4967 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 < 𝑏𝑥 < 𝑏))
34 fveq2 6541 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
3534oveq2d 7035 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑥)))
3635fveq2d 6545 . . . . . . . . . . 11 (𝑎 = 𝑥 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑥))))
37 oveq2 7027 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑏𝑎) = (𝑏𝑥))
3837fveq2d 6545 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑥)))
3938oveq2d 7035 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑘 · (abs‘(𝑏𝑎))) = (𝑘 · (abs‘(𝑏𝑥))))
4036, 39breq12d 4977 . . . . . . . . . 10 (𝑎 = 𝑥 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥)))))
4133, 40imbi12d 346 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑥 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥))))))
42 breq2 4968 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑥 < 𝑏𝑥 < 𝑦))
43 fveq2 6541 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (𝐹𝑏) = (𝐹𝑦))
4443fvoveq1d 7041 . . . . . . . . . . 11 (𝑏 = 𝑦 → (abs‘((𝐹𝑏) − (𝐹𝑥))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
45 fvoveq1 7042 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (abs‘(𝑏𝑥)) = (abs‘(𝑦𝑥)))
4645oveq2d 7035 . . . . . . . . . . 11 (𝑏 = 𝑦 → (𝑘 · (abs‘(𝑏𝑥))) = (𝑘 · (abs‘(𝑦𝑥))))
4744, 46breq12d 4977 . . . . . . . . . 10 (𝑏 = 𝑦 → ((abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
4842, 47imbi12d 346 . . . . . . . . 9 (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥)))) ↔ (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
4941, 48rspc2v 3570 . . . . . . . 8 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
5049ad2antlr 723 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
51 pm2.27 42 . . . . . . . 8 (𝑥 < 𝑦 → ((𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
5251adantl 482 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
5350, 52syld 47 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
54 0le0 11588 . . . . . . . . . 10 0 ≤ 0
55 fvres 6560 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
5655ad2antrl 724 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
57 cncff 23184 . . . . . . . . . . . . . . . . . 18 ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
5823, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
5958ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
60 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
61 ffvelrn 6717 . . . . . . . . . . . . . . . 16 (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
6259, 60, 61syl2an 595 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
6356, 62eqeltrrd 2883 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑥) ∈ ℝ)
6463recnd 10518 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑥) ∈ ℂ)
6564subidd 10835 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹𝑥) − (𝐹𝑥)) = 0)
6665abs00bd 14485 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑥))) = 0)
67 iccssre 12668 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
684, 6, 67syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
6968ad3antrrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ)
70 simprl 767 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵))
7169, 70sseldd 3892 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ)
7271recnd 10518 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ)
7372subidd 10835 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥𝑥) = 0)
7473abs00bd 14485 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥𝑥)) = 0)
7574oveq2d 7035 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥𝑥))) = (𝑘 · 0))
76 simplr 765 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℝ)
7776recnd 10518 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℂ)
7877mul01d 10688 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · 0) = 0)
7975, 78eqtrd 2830 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥𝑥))) = 0)
8066, 79breq12d 4977 . . . . . . . . . 10 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))) ↔ 0 ≤ 0))
8154, 80mpbiri 259 . . . . . . . . 9 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))))
82 fveq2 6541 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
8382fvoveq1d 7041 . . . . . . . . . 10 (𝑥 = 𝑦 → (abs‘((𝐹𝑥) − (𝐹𝑥))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
84 fvoveq1 7042 . . . . . . . . . . 11 (𝑥 = 𝑦 → (abs‘(𝑥𝑥)) = (abs‘(𝑦𝑥)))
8584oveq2d 7035 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑘 · (abs‘(𝑥𝑥))) = (𝑘 · (abs‘(𝑦𝑥))))
8683, 85breq12d 4977 . . . . . . . . 9 (𝑥 = 𝑦 → ((abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
8781, 86syl5ibcom 246 . . . . . . . 8 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
8887imp 407 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
8988a1d 25 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
90 breq1 4967 . . . . . . . . . . 11 (𝑎 = 𝑦 → (𝑎 < 𝑏𝑦 < 𝑏))
91 fveq2 6541 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝐹𝑎) = (𝐹𝑦))
9291oveq2d 7035 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑦)))
9392fveq2d 6545 . . . . . . . . . . . 12 (𝑎 = 𝑦 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑦))))
94 oveq2 7027 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝑏𝑎) = (𝑏𝑦))
9594fveq2d 6545 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑦)))
9695oveq2d 7035 . . . . . . . . . . . 12 (𝑎 = 𝑦 → (𝑘 · (abs‘(𝑏𝑎))) = (𝑘 · (abs‘(𝑏𝑦))))
9793, 96breq12d 4977 . . . . . . . . . . 11 (𝑎 = 𝑦 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦)))))
9890, 97imbi12d 346 . . . . . . . . . 10 (𝑎 = 𝑦 → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑦 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦))))))
99 breq2 4968 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑦 < 𝑏𝑦 < 𝑥))
100 fveq2 6541 . . . . . . . . . . . . 13 (𝑏 = 𝑥 → (𝐹𝑏) = (𝐹𝑥))
101100fvoveq1d 7041 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (abs‘((𝐹𝑏) − (𝐹𝑦))) = (abs‘((𝐹𝑥) − (𝐹𝑦))))
102 fvoveq1 7042 . . . . . . . . . . . . 13 (𝑏 = 𝑥 → (abs‘(𝑏𝑦)) = (abs‘(𝑥𝑦)))
103102oveq2d 7035 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (𝑘 · (abs‘(𝑏𝑦))) = (𝑘 · (abs‘(𝑥𝑦))))
104101, 103breq12d 4977 . . . . . . . . . . 11 (𝑏 = 𝑥 → ((abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦))) ↔ (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦)))))
10599, 104imbi12d 346 . . . . . . . . . 10 (𝑏 = 𝑥 → ((𝑦 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦)))) ↔ (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
10698, 105rspc2v 3570 . . . . . . . . 9 ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
107106ancoms 459 . . . . . . . 8 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
108107ad2antlr 723 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
109 simpr 485 . . . . . . . 8 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
110 fvres 6560 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
111110ad2antll 725 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
112 simpr 485 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
113 ffvelrn 6717 . . . . . . . . . . . . . . 15 (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
11459, 112, 113syl2an 595 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
115111, 114eqeltrrd 2883 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑦) ∈ ℝ)
116115recnd 10518 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑦) ∈ ℂ)
11764, 116abssubd 14647 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
118117adantr 481 . . . . . . . . . 10 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘((𝐹𝑥) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
11968ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
120119sseld 3890 . . . . . . . . . . . . . . 15 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ))
121119sseld 3890 . . . . . . . . . . . . . . 15 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ))
122120, 121anim12d 608 . . . . . . . . . . . . . 14 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
123122imp 407 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
124 recn 10476 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
125 recn 10476 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
126 abssub 14520 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
127124, 125, 126syl2an 595 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
128123, 127syl 17 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
129128adantr 481 . . . . . . . . . . 11 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
130129oveq2d 7035 . . . . . . . . . 10 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (𝑘 · (abs‘(𝑥𝑦))) = (𝑘 · (abs‘(𝑦𝑥))))
131118, 130breq12d 4977 . . . . . . . . 9 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
132131biimpd 230 . . . . . . . 8 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
133109, 132embantd 59 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
134108, 133syld 47 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
135 lttri4 10574 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
136123, 135syl 17 . . . . . 6 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
13753, 89, 134, 136mpjao3dan 1424 . . . . 5 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
138137ralrimdvva 3160 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
139138reximdva 3236 . . 3 ((𝜑𝐴𝐵) → (∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
14032, 139mpd 15 . 2 ((𝜑𝐴𝐵) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
14115, 140, 6, 4ltlecasei 10597 1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3o 1079   = wceq 1522  wcel 2080  wne 2983  wral 3104  wrex 3105  wss 3861  c0 4213   class class class wbr 4964  cres 5448  cima 5449  wf 6224  cfv 6228  (class class class)co 7019  pm cpm 8260  supcsup 8753  cc 10384  cr 10385  0cc0 10386   · cmul 10391  *cxr 10523   < clt 10524  cle 10525  cmin 10719  [,]cicc 12591  abscabs 14427  cnccncf 23167   D cdv 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-pre-sup 10464  ax-addf 10465  ax-mulf 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-iin 4830  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-se 5406  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-isom 6237  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-of 7270  df-om 7440  df-1st 7548  df-2nd 7549  df-supp 7685  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-2o 7957  df-oadd 7960  df-er 8142  df-map 8261  df-pm 8262  df-ixp 8314  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-fsupp 8683  df-fi 8724  df-sup 8755  df-inf 8756  df-oi 8823  df-card 9217  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-div 11148  df-nn 11489  df-2 11550  df-3 11551  df-4 11552  df-5 11553  df-6 11554  df-7 11555  df-8 11556  df-9 11557  df-n0 11748  df-z 11832  df-dec 11949  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-cmp 21679  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148
This theorem is referenced by:  c1lip2  24278
  Copyright terms: Public domain W3C validator