MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1lip1 Structured version   Visualization version   GIF version

Theorem c1lip1 25919
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
c1lip1.a (𝜑𝐴 ∈ ℝ)
c1lip1.b (𝜑𝐵 ∈ ℝ)
c1lip1.f (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
c1lip1.dv (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1lip1.cn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
c1lip1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑘   𝑥,𝐴,𝑦,𝑘   𝑥,𝐵,𝑦,𝑘   𝑥,𝐹,𝑦,𝑘

Proof of Theorem c1lip1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 11136 . . . 4 0 ∈ ℝ
21ne0ii 4297 . . 3 ℝ ≠ ∅
3 ral0 4466 . . . . 5 𝑥 ∈ ∅ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))
4 c1lip1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
54rexrd 11184 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
6 c1lip1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
76rexrd 11184 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
8 icc0 13315 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
95, 7, 8syl2anc 584 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
109biimpar 477 . . . . . 6 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
1110raleqdv 3290 . . . . 5 ((𝜑𝐵 < 𝐴) → (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))) ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
123, 11mpbiri 258 . . . 4 ((𝜑𝐵 < 𝐴) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
1312ralrimivw 3125 . . 3 ((𝜑𝐵 < 𝐴) → ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
14 r19.2z 4448 . . 3 ((ℝ ≠ ∅ ∧ ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
152, 13, 14sylancr 587 . 2 ((𝜑𝐵 < 𝐴) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
164adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
176adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
18 simpr 484 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝐵)
19 c1lip1.f . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
2019adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐹 ∈ (ℂ ↑pm ℝ))
21 c1lip1.dv . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
2221adantr 480 . . . . 5 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
23 c1lip1.cn . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
2423adantr 480 . . . . 5 ((𝜑𝐴𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
25 eqid 2729 . . . . 5 sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
2616, 17, 18, 20, 22, 24, 25c1liplem1 25918 . . . 4 ((𝜑𝐴𝐵) → (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
27 oveq1 7360 . . . . . . . 8 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (𝑘 · (abs‘(𝑏𝑎))) = (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))
2827breq2d 5107 . . . . . . 7 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎)))))
2928imbi2d 340 . . . . . 6 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
30292ralbidv 3193 . . . . 5 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
3130rspcev 3579 . . . 4 ((sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))))
3226, 31syl 17 . . 3 ((𝜑𝐴𝐵) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))))
33 breq1 5098 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 < 𝑏𝑥 < 𝑏))
34 fveq2 6826 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
3534oveq2d 7369 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑥)))
3635fveq2d 6830 . . . . . . . . . . 11 (𝑎 = 𝑥 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑥))))
37 oveq2 7361 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑏𝑎) = (𝑏𝑥))
3837fveq2d 6830 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑥)))
3938oveq2d 7369 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑘 · (abs‘(𝑏𝑎))) = (𝑘 · (abs‘(𝑏𝑥))))
4036, 39breq12d 5108 . . . . . . . . . 10 (𝑎 = 𝑥 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥)))))
4133, 40imbi12d 344 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑥 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥))))))
42 breq2 5099 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑥 < 𝑏𝑥 < 𝑦))
43 fveq2 6826 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (𝐹𝑏) = (𝐹𝑦))
4443fvoveq1d 7375 . . . . . . . . . . 11 (𝑏 = 𝑦 → (abs‘((𝐹𝑏) − (𝐹𝑥))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
45 fvoveq1 7376 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (abs‘(𝑏𝑥)) = (abs‘(𝑦𝑥)))
4645oveq2d 7369 . . . . . . . . . . 11 (𝑏 = 𝑦 → (𝑘 · (abs‘(𝑏𝑥))) = (𝑘 · (abs‘(𝑦𝑥))))
4744, 46breq12d 5108 . . . . . . . . . 10 (𝑏 = 𝑦 → ((abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
4842, 47imbi12d 344 . . . . . . . . 9 (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥)))) ↔ (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
4941, 48rspc2v 3590 . . . . . . . 8 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
5049ad2antlr 727 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
51 pm2.27 42 . . . . . . . 8 (𝑥 < 𝑦 → ((𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
5251adantl 481 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
5350, 52syld 47 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
54 0le0 12248 . . . . . . . . . 10 0 ≤ 0
55 fvres 6845 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
5655ad2antrl 728 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
57 cncff 24803 . . . . . . . . . . . . . . . . . 18 ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
5823, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
5958ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
60 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
61 ffvelcdm 7019 . . . . . . . . . . . . . . . 16 (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
6259, 60, 61syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
6356, 62eqeltrrd 2829 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑥) ∈ ℝ)
6463recnd 11162 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑥) ∈ ℂ)
6564subidd 11482 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹𝑥) − (𝐹𝑥)) = 0)
6665abs00bd 15217 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑥))) = 0)
67 iccssre 13351 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
684, 6, 67syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
6968ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ)
70 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵))
7169, 70sseldd 3938 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ)
7271recnd 11162 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ)
7372subidd 11482 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥𝑥) = 0)
7473abs00bd 15217 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥𝑥)) = 0)
7574oveq2d 7369 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥𝑥))) = (𝑘 · 0))
76 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℝ)
7776recnd 11162 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℂ)
7877mul01d 11334 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · 0) = 0)
7975, 78eqtrd 2764 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥𝑥))) = 0)
8066, 79breq12d 5108 . . . . . . . . . 10 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))) ↔ 0 ≤ 0))
8154, 80mpbiri 258 . . . . . . . . 9 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))))
82 fveq2 6826 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
8382fvoveq1d 7375 . . . . . . . . . 10 (𝑥 = 𝑦 → (abs‘((𝐹𝑥) − (𝐹𝑥))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
84 fvoveq1 7376 . . . . . . . . . . 11 (𝑥 = 𝑦 → (abs‘(𝑥𝑥)) = (abs‘(𝑦𝑥)))
8584oveq2d 7369 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑘 · (abs‘(𝑥𝑥))) = (𝑘 · (abs‘(𝑦𝑥))))
8683, 85breq12d 5108 . . . . . . . . 9 (𝑥 = 𝑦 → ((abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
8781, 86syl5ibcom 245 . . . . . . . 8 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
8887imp 406 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
8988a1d 25 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
90 breq1 5098 . . . . . . . . . . 11 (𝑎 = 𝑦 → (𝑎 < 𝑏𝑦 < 𝑏))
91 fveq2 6826 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝐹𝑎) = (𝐹𝑦))
9291oveq2d 7369 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑦)))
9392fveq2d 6830 . . . . . . . . . . . 12 (𝑎 = 𝑦 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑦))))
94 oveq2 7361 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝑏𝑎) = (𝑏𝑦))
9594fveq2d 6830 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑦)))
9695oveq2d 7369 . . . . . . . . . . . 12 (𝑎 = 𝑦 → (𝑘 · (abs‘(𝑏𝑎))) = (𝑘 · (abs‘(𝑏𝑦))))
9793, 96breq12d 5108 . . . . . . . . . . 11 (𝑎 = 𝑦 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦)))))
9890, 97imbi12d 344 . . . . . . . . . 10 (𝑎 = 𝑦 → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑦 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦))))))
99 breq2 5099 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑦 < 𝑏𝑦 < 𝑥))
100 fveq2 6826 . . . . . . . . . . . . 13 (𝑏 = 𝑥 → (𝐹𝑏) = (𝐹𝑥))
101100fvoveq1d 7375 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (abs‘((𝐹𝑏) − (𝐹𝑦))) = (abs‘((𝐹𝑥) − (𝐹𝑦))))
102 fvoveq1 7376 . . . . . . . . . . . . 13 (𝑏 = 𝑥 → (abs‘(𝑏𝑦)) = (abs‘(𝑥𝑦)))
103102oveq2d 7369 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (𝑘 · (abs‘(𝑏𝑦))) = (𝑘 · (abs‘(𝑥𝑦))))
104101, 103breq12d 5108 . . . . . . . . . . 11 (𝑏 = 𝑥 → ((abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦))) ↔ (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦)))))
10599, 104imbi12d 344 . . . . . . . . . 10 (𝑏 = 𝑥 → ((𝑦 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦)))) ↔ (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
10698, 105rspc2v 3590 . . . . . . . . 9 ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
107106ancoms 458 . . . . . . . 8 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
108107ad2antlr 727 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
109 simpr 484 . . . . . . . 8 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
110 fvres 6845 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
111110ad2antll 729 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
112 simpr 484 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
113 ffvelcdm 7019 . . . . . . . . . . . . . . 15 (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
11459, 112, 113syl2an 596 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
115111, 114eqeltrrd 2829 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑦) ∈ ℝ)
116115recnd 11162 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑦) ∈ ℂ)
11764, 116abssubd 15382 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
118117adantr 480 . . . . . . . . . 10 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘((𝐹𝑥) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
11968ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
120119sseld 3936 . . . . . . . . . . . . . . 15 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ))
121119sseld 3936 . . . . . . . . . . . . . . 15 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ))
122120, 121anim12d 609 . . . . . . . . . . . . . 14 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
123122imp 406 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
124 recn 11118 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
125 recn 11118 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
126 abssub 15253 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
127124, 125, 126syl2an 596 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
128123, 127syl 17 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
129128adantr 480 . . . . . . . . . . 11 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
130129oveq2d 7369 . . . . . . . . . 10 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (𝑘 · (abs‘(𝑥𝑦))) = (𝑘 · (abs‘(𝑦𝑥))))
131118, 130breq12d 5108 . . . . . . . . 9 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
132131biimpd 229 . . . . . . . 8 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
133109, 132embantd 59 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
134108, 133syld 47 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
135 lttri4 11219 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
136123, 135syl 17 . . . . . 6 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
13753, 89, 134, 136mpjao3dan 1434 . . . . 5 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
138137ralrimdvva 3184 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
139138reximdva 3142 . . 3 ((𝜑𝐴𝐵) → (∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
14032, 139mpd 15 . 2 ((𝜑𝐴𝐵) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
14115, 140, 6, 4ltlecasei 11243 1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3905  c0 4286   class class class wbr 5095  cres 5625  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  pm cpm 8761  supcsup 9349  cc 11026  cr 11027  0cc0 11028   · cmul 11033  *cxr 11167   < clt 11168  cle 11169  cmin 11366  [,]cicc 13270  abscabs 15160  cnccncf 24786   D cdv 25781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-haus 23219  df-cmp 23291  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785
This theorem is referenced by:  c1lip2  25920
  Copyright terms: Public domain W3C validator