MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1lip1 Structured version   Visualization version   GIF version

Theorem c1lip1 25496
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
c1lip1.a (𝜑𝐴 ∈ ℝ)
c1lip1.b (𝜑𝐵 ∈ ℝ)
c1lip1.f (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
c1lip1.dv (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1lip1.cn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
c1lip1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑘   𝑥,𝐴,𝑦,𝑘   𝑥,𝐵,𝑦,𝑘   𝑥,𝐹,𝑦,𝑘

Proof of Theorem c1lip1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 11212 . . . 4 0 ∈ ℝ
21ne0ii 4336 . . 3 ℝ ≠ ∅
3 ral0 4511 . . . . 5 𝑥 ∈ ∅ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))
4 c1lip1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
54rexrd 11260 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
6 c1lip1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
76rexrd 11260 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
8 icc0 13368 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
95, 7, 8syl2anc 585 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
109biimpar 479 . . . . . 6 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
1110raleqdv 3326 . . . . 5 ((𝜑𝐵 < 𝐴) → (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))) ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
123, 11mpbiri 258 . . . 4 ((𝜑𝐵 < 𝐴) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
1312ralrimivw 3151 . . 3 ((𝜑𝐵 < 𝐴) → ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
14 r19.2z 4493 . . 3 ((ℝ ≠ ∅ ∧ ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
152, 13, 14sylancr 588 . 2 ((𝜑𝐵 < 𝐴) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
164adantr 482 . . . . 5 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
176adantr 482 . . . . 5 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
18 simpr 486 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝐵)
19 c1lip1.f . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
2019adantr 482 . . . . 5 ((𝜑𝐴𝐵) → 𝐹 ∈ (ℂ ↑pm ℝ))
21 c1lip1.dv . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
2221adantr 482 . . . . 5 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
23 c1lip1.cn . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
2423adantr 482 . . . . 5 ((𝜑𝐴𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
25 eqid 2733 . . . . 5 sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
2616, 17, 18, 20, 22, 24, 25c1liplem1 25495 . . . 4 ((𝜑𝐴𝐵) → (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
27 oveq1 7411 . . . . . . . 8 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (𝑘 · (abs‘(𝑏𝑎))) = (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))
2827breq2d 5159 . . . . . . 7 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎)))))
2928imbi2d 341 . . . . . 6 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
30292ralbidv 3219 . . . . 5 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
3130rspcev 3612 . . . 4 ((sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))))
3226, 31syl 17 . . 3 ((𝜑𝐴𝐵) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))))
33 breq1 5150 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 < 𝑏𝑥 < 𝑏))
34 fveq2 6888 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
3534oveq2d 7420 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑥)))
3635fveq2d 6892 . . . . . . . . . . 11 (𝑎 = 𝑥 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑥))))
37 oveq2 7412 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑏𝑎) = (𝑏𝑥))
3837fveq2d 6892 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑥)))
3938oveq2d 7420 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑘 · (abs‘(𝑏𝑎))) = (𝑘 · (abs‘(𝑏𝑥))))
4036, 39breq12d 5160 . . . . . . . . . 10 (𝑎 = 𝑥 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥)))))
4133, 40imbi12d 345 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑥 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥))))))
42 breq2 5151 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑥 < 𝑏𝑥 < 𝑦))
43 fveq2 6888 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (𝐹𝑏) = (𝐹𝑦))
4443fvoveq1d 7426 . . . . . . . . . . 11 (𝑏 = 𝑦 → (abs‘((𝐹𝑏) − (𝐹𝑥))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
45 fvoveq1 7427 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (abs‘(𝑏𝑥)) = (abs‘(𝑦𝑥)))
4645oveq2d 7420 . . . . . . . . . . 11 (𝑏 = 𝑦 → (𝑘 · (abs‘(𝑏𝑥))) = (𝑘 · (abs‘(𝑦𝑥))))
4744, 46breq12d 5160 . . . . . . . . . 10 (𝑏 = 𝑦 → ((abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
4842, 47imbi12d 345 . . . . . . . . 9 (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥)))) ↔ (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
4941, 48rspc2v 3621 . . . . . . . 8 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
5049ad2antlr 726 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
51 pm2.27 42 . . . . . . . 8 (𝑥 < 𝑦 → ((𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
5251adantl 483 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
5350, 52syld 47 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
54 0le0 12309 . . . . . . . . . 10 0 ≤ 0
55 fvres 6907 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
5655ad2antrl 727 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
57 cncff 24391 . . . . . . . . . . . . . . . . . 18 ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
5823, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
5958ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
60 simpl 484 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
61 ffvelcdm 7079 . . . . . . . . . . . . . . . 16 (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
6259, 60, 61syl2an 597 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
6356, 62eqeltrrd 2835 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑥) ∈ ℝ)
6463recnd 11238 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑥) ∈ ℂ)
6564subidd 11555 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹𝑥) − (𝐹𝑥)) = 0)
6665abs00bd 15234 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑥))) = 0)
67 iccssre 13402 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
684, 6, 67syl2anc 585 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
6968ad3antrrr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ)
70 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵))
7169, 70sseldd 3982 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ)
7271recnd 11238 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ)
7372subidd 11555 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥𝑥) = 0)
7473abs00bd 15234 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥𝑥)) = 0)
7574oveq2d 7420 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥𝑥))) = (𝑘 · 0))
76 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℝ)
7776recnd 11238 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℂ)
7877mul01d 11409 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · 0) = 0)
7975, 78eqtrd 2773 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥𝑥))) = 0)
8066, 79breq12d 5160 . . . . . . . . . 10 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))) ↔ 0 ≤ 0))
8154, 80mpbiri 258 . . . . . . . . 9 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))))
82 fveq2 6888 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
8382fvoveq1d 7426 . . . . . . . . . 10 (𝑥 = 𝑦 → (abs‘((𝐹𝑥) − (𝐹𝑥))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
84 fvoveq1 7427 . . . . . . . . . . 11 (𝑥 = 𝑦 → (abs‘(𝑥𝑥)) = (abs‘(𝑦𝑥)))
8584oveq2d 7420 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑘 · (abs‘(𝑥𝑥))) = (𝑘 · (abs‘(𝑦𝑥))))
8683, 85breq12d 5160 . . . . . . . . 9 (𝑥 = 𝑦 → ((abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
8781, 86syl5ibcom 244 . . . . . . . 8 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
8887imp 408 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
8988a1d 25 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
90 breq1 5150 . . . . . . . . . . 11 (𝑎 = 𝑦 → (𝑎 < 𝑏𝑦 < 𝑏))
91 fveq2 6888 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝐹𝑎) = (𝐹𝑦))
9291oveq2d 7420 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑦)))
9392fveq2d 6892 . . . . . . . . . . . 12 (𝑎 = 𝑦 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑦))))
94 oveq2 7412 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝑏𝑎) = (𝑏𝑦))
9594fveq2d 6892 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑦)))
9695oveq2d 7420 . . . . . . . . . . . 12 (𝑎 = 𝑦 → (𝑘 · (abs‘(𝑏𝑎))) = (𝑘 · (abs‘(𝑏𝑦))))
9793, 96breq12d 5160 . . . . . . . . . . 11 (𝑎 = 𝑦 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦)))))
9890, 97imbi12d 345 . . . . . . . . . 10 (𝑎 = 𝑦 → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑦 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦))))))
99 breq2 5151 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑦 < 𝑏𝑦 < 𝑥))
100 fveq2 6888 . . . . . . . . . . . . 13 (𝑏 = 𝑥 → (𝐹𝑏) = (𝐹𝑥))
101100fvoveq1d 7426 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (abs‘((𝐹𝑏) − (𝐹𝑦))) = (abs‘((𝐹𝑥) − (𝐹𝑦))))
102 fvoveq1 7427 . . . . . . . . . . . . 13 (𝑏 = 𝑥 → (abs‘(𝑏𝑦)) = (abs‘(𝑥𝑦)))
103102oveq2d 7420 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (𝑘 · (abs‘(𝑏𝑦))) = (𝑘 · (abs‘(𝑥𝑦))))
104101, 103breq12d 5160 . . . . . . . . . . 11 (𝑏 = 𝑥 → ((abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦))) ↔ (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦)))))
10599, 104imbi12d 345 . . . . . . . . . 10 (𝑏 = 𝑥 → ((𝑦 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦)))) ↔ (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
10698, 105rspc2v 3621 . . . . . . . . 9 ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
107106ancoms 460 . . . . . . . 8 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
108107ad2antlr 726 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
109 simpr 486 . . . . . . . 8 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
110 fvres 6907 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
111110ad2antll 728 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
112 simpr 486 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
113 ffvelcdm 7079 . . . . . . . . . . . . . . 15 (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
11459, 112, 113syl2an 597 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
115111, 114eqeltrrd 2835 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑦) ∈ ℝ)
116115recnd 11238 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑦) ∈ ℂ)
11764, 116abssubd 15396 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
118117adantr 482 . . . . . . . . . 10 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘((𝐹𝑥) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
11968ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
120119sseld 3980 . . . . . . . . . . . . . . 15 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ))
121119sseld 3980 . . . . . . . . . . . . . . 15 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ))
122120, 121anim12d 610 . . . . . . . . . . . . . 14 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
123122imp 408 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
124 recn 11196 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
125 recn 11196 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
126 abssub 15269 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
127124, 125, 126syl2an 597 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
128123, 127syl 17 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
129128adantr 482 . . . . . . . . . . 11 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
130129oveq2d 7420 . . . . . . . . . 10 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (𝑘 · (abs‘(𝑥𝑦))) = (𝑘 · (abs‘(𝑦𝑥))))
131118, 130breq12d 5160 . . . . . . . . 9 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
132131biimpd 228 . . . . . . . 8 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
133109, 132embantd 59 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
134108, 133syld 47 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
135 lttri4 11294 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
136123, 135syl 17 . . . . . 6 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
13753, 89, 134, 136mpjao3dan 1432 . . . . 5 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
138137ralrimdvva 3210 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
139138reximdva 3169 . . 3 ((𝜑𝐴𝐵) → (∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
14032, 139mpd 15 . 2 ((𝜑𝐴𝐵) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
14115, 140, 6, 4ltlecasei 11318 1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3o 1087   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  wss 3947  c0 4321   class class class wbr 5147  cres 5677  cima 5678  wf 6536  cfv 6540  (class class class)co 7404  pm cpm 8817  supcsup 9431  cc 11104  cr 11105  0cc0 11106   · cmul 11111  *cxr 11243   < clt 11244  cle 11245  cmin 11440  [,]cicc 13323  abscabs 15177  cnccncf 24374   D cdv 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19643  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-fbas 20926  df-fg 20927  df-cnfld 20930  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-cld 22505  df-ntr 22506  df-cls 22507  df-nei 22584  df-lp 22622  df-perf 22623  df-cn 22713  df-cnp 22714  df-haus 22801  df-cmp 22873  df-tx 23048  df-hmeo 23241  df-fil 23332  df-fm 23424  df-flim 23425  df-flf 23426  df-xms 23808  df-ms 23809  df-tms 23810  df-cncf 24376  df-limc 25365  df-dv 25366
This theorem is referenced by:  c1lip2  25497
  Copyright terms: Public domain W3C validator