| Step | Hyp | Ref
| Expression |
| 1 | | 0re 11242 |
. . . 4
⊢ 0 ∈
ℝ |
| 2 | 1 | ne0ii 4324 |
. . 3
⊢ ℝ
≠ ∅ |
| 3 | | ral0 4493 |
. . . . 5
⊢
∀𝑥 ∈
∅ ∀𝑦 ∈
(𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))) |
| 4 | | c1lip1.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 5 | 4 | rexrd 11290 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 6 | | c1lip1.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 7 | 6 | rexrd 11290 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 8 | | icc0 13415 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
| 9 | 5, 7, 8 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
| 10 | 9 | biimpar 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅) |
| 11 | 10 | raleqdv 3309 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))) ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 12 | 3, 11 | mpbiri 258 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| 13 | 12 | ralrimivw 3137 |
. . 3
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| 14 | | r19.2z 4475 |
. . 3
⊢ ((ℝ
≠ ∅ ∧ ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| 15 | 2, 13, 14 | sylancr 587 |
. 2
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| 16 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
| 17 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
| 18 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) |
| 19 | | c1lip1.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 20 | 19 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 21 | | c1lip1.dv |
. . . . . 6
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 22 | 21 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 23 | | c1lip1.cn |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 24 | 23 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 25 | | eqid 2736 |
. . . . 5
⊢ sup((abs
“ ((ℝ D 𝐹)
“ (𝐴[,]𝐵))), ℝ, < ) = sup((abs
“ ((ℝ D 𝐹)
“ (𝐴[,]𝐵))), ℝ, <
) |
| 26 | 16, 17, 18, 20, 22, 24, 25 | c1liplem1 25958 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧
∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))))) |
| 27 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (𝑘 · (abs‘(𝑏 − 𝑎))) = (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))) |
| 28 | 27 | breq2d 5136 |
. . . . . . 7
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) →
((abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))) ↔ (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎))))) |
| 29 | 28 | imbi2d 340 |
. . . . . 6
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → ((𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ (𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))))) |
| 30 | 29 | 2ralbidv 3209 |
. . . . 5
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))))) |
| 31 | 30 | rspcev 3606 |
. . . 4
⊢
((sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧
∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎))))) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))))) |
| 32 | 26, 31 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))))) |
| 33 | | breq1 5127 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑎 < 𝑏 ↔ 𝑥 < 𝑏)) |
| 34 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) |
| 35 | 34 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → ((𝐹‘𝑏) − (𝐹‘𝑎)) = ((𝐹‘𝑏) − (𝐹‘𝑥))) |
| 36 | 35 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) = (abs‘((𝐹‘𝑏) − (𝐹‘𝑥)))) |
| 37 | | oveq2 7418 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (𝑏 − 𝑎) = (𝑏 − 𝑥)) |
| 38 | 37 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (abs‘(𝑏 − 𝑎)) = (abs‘(𝑏 − 𝑥))) |
| 39 | 38 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑘 · (abs‘(𝑏 − 𝑎))) = (𝑘 · (abs‘(𝑏 − 𝑥)))) |
| 40 | 36, 39 | breq12d 5137 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))) ↔ (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥))))) |
| 41 | 33, 40 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ (𝑥 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥)))))) |
| 42 | | breq2 5128 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → (𝑥 < 𝑏 ↔ 𝑥 < 𝑦)) |
| 43 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑦 → (𝐹‘𝑏) = (𝐹‘𝑦)) |
| 44 | 43 | fvoveq1d 7432 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) |
| 45 | | fvoveq1 7433 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑦 → (abs‘(𝑏 − 𝑥)) = (abs‘(𝑦 − 𝑥))) |
| 46 | 45 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → (𝑘 · (abs‘(𝑏 − 𝑥))) = (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| 47 | 44, 46 | breq12d 5137 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥))) ↔ (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 48 | 42, 47 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥)))) ↔ (𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))))) |
| 49 | 41, 48 | rspc2v 3617 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))))) |
| 50 | 49 | ad2antlr 727 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))))) |
| 51 | | pm2.27 42 |
. . . . . . . 8
⊢ (𝑥 < 𝑦 → ((𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 52 | 51 | adantl 481 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 53 | 50, 52 | syld 47 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 54 | | 0le0 12346 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
| 55 | | fvres 6900 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹‘𝑥)) |
| 56 | 55 | ad2antrl 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹‘𝑥)) |
| 57 | | cncff 24842 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ) |
| 58 | 23, 57 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ) |
| 59 | 58 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ) |
| 60 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 61 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ) |
| 62 | 59, 60, 61 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ) |
| 63 | 56, 62 | eqeltrrd 2836 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑥) ∈ ℝ) |
| 64 | 63 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑥) ∈ ℂ) |
| 65 | 64 | subidd 11587 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹‘𝑥) − (𝐹‘𝑥)) = 0) |
| 66 | 65 | abs00bd 15315 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) = 0) |
| 67 | | iccssre 13451 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| 68 | 4, 6, 67 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 69 | 68 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ) |
| 70 | | simprl 770 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 71 | 69, 70 | sseldd 3964 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ) |
| 72 | 71 | recnd 11268 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ) |
| 73 | 72 | subidd 11587 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 − 𝑥) = 0) |
| 74 | 73 | abs00bd 15315 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥 − 𝑥)) = 0) |
| 75 | 74 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥 − 𝑥))) = (𝑘 · 0)) |
| 76 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℝ) |
| 77 | 76 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℂ) |
| 78 | 77 | mul01d 11439 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · 0) = 0) |
| 79 | 75, 78 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥 − 𝑥))) = 0) |
| 80 | 66, 79 | breq12d 5137 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑥 − 𝑥))) ↔ 0 ≤ 0)) |
| 81 | 54, 80 | mpbiri 258 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑥 − 𝑥)))) |
| 82 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 83 | 82 | fvoveq1d 7432 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) |
| 84 | | fvoveq1 7433 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (abs‘(𝑥 − 𝑥)) = (abs‘(𝑦 − 𝑥))) |
| 85 | 84 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑘 · (abs‘(𝑥 − 𝑥))) = (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| 86 | 83, 85 | breq12d 5137 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑥 − 𝑥))) ↔ (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 87 | 81, 86 | syl5ibcom 245 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 88 | 87 | imp 406 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| 89 | 88 | a1d 25 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 90 | | breq1 5127 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → (𝑎 < 𝑏 ↔ 𝑦 < 𝑏)) |
| 91 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑦 → (𝐹‘𝑎) = (𝐹‘𝑦)) |
| 92 | 91 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑦 → ((𝐹‘𝑏) − (𝐹‘𝑎)) = ((𝐹‘𝑏) − (𝐹‘𝑦))) |
| 93 | 92 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) = (abs‘((𝐹‘𝑏) − (𝐹‘𝑦)))) |
| 94 | | oveq2 7418 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑦 → (𝑏 − 𝑎) = (𝑏 − 𝑦)) |
| 95 | 94 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑦 → (abs‘(𝑏 − 𝑎)) = (abs‘(𝑏 − 𝑦))) |
| 96 | 95 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → (𝑘 · (abs‘(𝑏 − 𝑎))) = (𝑘 · (abs‘(𝑏 − 𝑦)))) |
| 97 | 93, 96 | breq12d 5137 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))) ↔ (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦))))) |
| 98 | 90, 97 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑦 → ((𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ (𝑦 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦)))))) |
| 99 | | breq2 5128 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑥 → (𝑦 < 𝑏 ↔ 𝑦 < 𝑥)) |
| 100 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑥 → (𝐹‘𝑏) = (𝐹‘𝑥)) |
| 101 | 100 | fvoveq1d 7432 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑥 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) = (abs‘((𝐹‘𝑥) − (𝐹‘𝑦)))) |
| 102 | | fvoveq1 7433 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑥 → (abs‘(𝑏 − 𝑦)) = (abs‘(𝑥 − 𝑦))) |
| 103 | 102 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑥 → (𝑘 · (abs‘(𝑏 − 𝑦))) = (𝑘 · (abs‘(𝑥 − 𝑦)))) |
| 104 | 101, 103 | breq12d 5137 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑥 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦))) ↔ (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦))))) |
| 105 | 99, 104 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑥 → ((𝑦 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦)))) ↔ (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) |
| 106 | 98, 105 | rspc2v 3617 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) |
| 107 | 106 | ancoms 458 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) |
| 108 | 107 | ad2antlr 727 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) |
| 109 | | simpr 484 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥) |
| 110 | | fvres 6900 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹‘𝑦)) |
| 111 | 110 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹‘𝑦)) |
| 112 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵)) |
| 113 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ) |
| 114 | 59, 112, 113 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ) |
| 115 | 111, 114 | eqeltrrd 2836 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑦) ∈ ℝ) |
| 116 | 115 | recnd 11268 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑦) ∈ ℂ) |
| 117 | 64, 116 | abssubd 15477 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) |
| 118 | 117 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) |
| 119 | 68 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| 120 | 119 | sseld 3962 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
| 121 | 119 | sseld 3962 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ)) |
| 122 | 120, 121 | anim12d 609 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))) |
| 123 | 122 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) |
| 124 | | recn 11224 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
| 125 | | recn 11224 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
| 126 | | abssub 15350 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
(abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) |
| 127 | 124, 125,
126 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
(abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) |
| 128 | 123, 127 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) |
| 129 | 128 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) |
| 130 | 129 | oveq2d 7426 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (𝑘 · (abs‘(𝑥 − 𝑦))) = (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| 131 | 118, 130 | breq12d 5137 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦))) ↔ (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 132 | 131 | biimpd 229 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 133 | 109, 132 | embantd 59 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 134 | 108, 133 | syld 47 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 135 | | lttri4 11324 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 136 | 123, 135 | syl 17 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 137 | 53, 89, 134, 136 | mpjao3dan 1434 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 138 | 137 | ralrimdvva 3200 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 139 | 138 | reximdva 3154 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
| 140 | 32, 139 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| 141 | 15, 140, 6, 4 | ltlecasei 11348 |
1
⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |