| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 0re 11264 | . . . 4
⊢ 0 ∈
ℝ | 
| 2 | 1 | ne0ii 4343 | . . 3
⊢ ℝ
≠ ∅ | 
| 3 |  | ral0 4512 | . . . . 5
⊢
∀𝑥 ∈
∅ ∀𝑦 ∈
(𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))) | 
| 4 |  | c1lip1.a | . . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 5 | 4 | rexrd 11312 | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) | 
| 6 |  | c1lip1.b | . . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 7 | 6 | rexrd 11312 | . . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ*) | 
| 8 |  | icc0 13436 | . . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | 
| 9 | 5, 7, 8 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | 
| 10 | 9 | biimpar 477 | . . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅) | 
| 11 | 10 | raleqdv 3325 | . . . . 5
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))) ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 12 | 3, 11 | mpbiri 258 | . . . 4
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) | 
| 13 | 12 | ralrimivw 3149 | . . 3
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) | 
| 14 |  | r19.2z 4494 | . . 3
⊢ ((ℝ
≠ ∅ ∧ ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) | 
| 15 | 2, 13, 14 | sylancr 587 | . 2
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) | 
| 16 | 4 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) | 
| 17 | 6 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) | 
| 18 |  | simpr 484 | . . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | 
| 19 |  | c1lip1.f | . . . . . 6
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) | 
| 20 | 19 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐹 ∈ (ℂ ↑pm
ℝ)) | 
| 21 |  | c1lip1.dv | . . . . . 6
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) | 
| 22 | 21 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) | 
| 23 |  | c1lip1.cn | . . . . . 6
⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) | 
| 24 | 23 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) | 
| 25 |  | eqid 2736 | . . . . 5
⊢ sup((abs
“ ((ℝ D 𝐹)
“ (𝐴[,]𝐵))), ℝ, < ) = sup((abs
“ ((ℝ D 𝐹)
“ (𝐴[,]𝐵))), ℝ, <
) | 
| 26 | 16, 17, 18, 20, 22, 24, 25 | c1liplem1 26036 | . . . 4
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧
∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))))) | 
| 27 |  | oveq1 7439 | . . . . . . . 8
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (𝑘 · (abs‘(𝑏 − 𝑎))) = (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))) | 
| 28 | 27 | breq2d 5154 | . . . . . . 7
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) →
((abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))) ↔ (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎))))) | 
| 29 | 28 | imbi2d 340 | . . . . . 6
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → ((𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ (𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))))) | 
| 30 | 29 | 2ralbidv 3220 | . . . . 5
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))))) | 
| 31 | 30 | rspcev 3621 | . . . 4
⊢
((sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧
∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎))))) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))))) | 
| 32 | 26, 31 | syl 17 | . . 3
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))))) | 
| 33 |  | breq1 5145 | . . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑎 < 𝑏 ↔ 𝑥 < 𝑏)) | 
| 34 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) | 
| 35 | 34 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → ((𝐹‘𝑏) − (𝐹‘𝑎)) = ((𝐹‘𝑏) − (𝐹‘𝑥))) | 
| 36 | 35 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) = (abs‘((𝐹‘𝑏) − (𝐹‘𝑥)))) | 
| 37 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (𝑏 − 𝑎) = (𝑏 − 𝑥)) | 
| 38 | 37 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (abs‘(𝑏 − 𝑎)) = (abs‘(𝑏 − 𝑥))) | 
| 39 | 38 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑘 · (abs‘(𝑏 − 𝑎))) = (𝑘 · (abs‘(𝑏 − 𝑥)))) | 
| 40 | 36, 39 | breq12d 5155 | . . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))) ↔ (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥))))) | 
| 41 | 33, 40 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ (𝑥 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥)))))) | 
| 42 |  | breq2 5146 | . . . . . . . . . 10
⊢ (𝑏 = 𝑦 → (𝑥 < 𝑏 ↔ 𝑥 < 𝑦)) | 
| 43 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑦 → (𝐹‘𝑏) = (𝐹‘𝑦)) | 
| 44 | 43 | fvoveq1d 7454 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) | 
| 45 |  | fvoveq1 7455 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑦 → (abs‘(𝑏 − 𝑥)) = (abs‘(𝑦 − 𝑥))) | 
| 46 | 45 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → (𝑘 · (abs‘(𝑏 − 𝑥))) = (𝑘 · (abs‘(𝑦 − 𝑥)))) | 
| 47 | 44, 46 | breq12d 5155 | . . . . . . . . . 10
⊢ (𝑏 = 𝑦 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥))) ↔ (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 48 | 42, 47 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥)))) ↔ (𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))))) | 
| 49 | 41, 48 | rspc2v 3632 | . . . . . . . 8
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))))) | 
| 50 | 49 | ad2antlr 727 | . . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))))) | 
| 51 |  | pm2.27 42 | . . . . . . . 8
⊢ (𝑥 < 𝑦 → ((𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 52 | 51 | adantl 481 | . . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 53 | 50, 52 | syld 47 | . . . . . 6
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 54 |  | 0le0 12368 | . . . . . . . . . 10
⊢ 0 ≤
0 | 
| 55 |  | fvres 6924 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹‘𝑥)) | 
| 56 | 55 | ad2antrl 728 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹‘𝑥)) | 
| 57 |  | cncff 24920 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ) | 
| 58 | 23, 57 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ) | 
| 59 | 58 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ) | 
| 60 |  | simpl 482 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) | 
| 61 |  | ffvelcdm 7100 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ) | 
| 62 | 59, 60, 61 | syl2an 596 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ) | 
| 63 | 56, 62 | eqeltrrd 2841 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑥) ∈ ℝ) | 
| 64 | 63 | recnd 11290 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑥) ∈ ℂ) | 
| 65 | 64 | subidd 11609 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹‘𝑥) − (𝐹‘𝑥)) = 0) | 
| 66 | 65 | abs00bd 15331 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) = 0) | 
| 67 |  | iccssre 13470 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | 
| 68 | 4, 6, 67 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) | 
| 69 | 68 | ad3antrrr 730 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ) | 
| 70 |  | simprl 770 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵)) | 
| 71 | 69, 70 | sseldd 3983 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ) | 
| 72 | 71 | recnd 11290 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ) | 
| 73 | 72 | subidd 11609 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 − 𝑥) = 0) | 
| 74 | 73 | abs00bd 15331 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥 − 𝑥)) = 0) | 
| 75 | 74 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥 − 𝑥))) = (𝑘 · 0)) | 
| 76 |  | simplr 768 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℝ) | 
| 77 | 76 | recnd 11290 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℂ) | 
| 78 | 77 | mul01d 11461 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · 0) = 0) | 
| 79 | 75, 78 | eqtrd 2776 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥 − 𝑥))) = 0) | 
| 80 | 66, 79 | breq12d 5155 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑥 − 𝑥))) ↔ 0 ≤ 0)) | 
| 81 | 54, 80 | mpbiri 258 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑥 − 𝑥)))) | 
| 82 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | 
| 83 | 82 | fvoveq1d 7454 | . . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) | 
| 84 |  | fvoveq1 7455 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (abs‘(𝑥 − 𝑥)) = (abs‘(𝑦 − 𝑥))) | 
| 85 | 84 | oveq2d 7448 | . . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑘 · (abs‘(𝑥 − 𝑥))) = (𝑘 · (abs‘(𝑦 − 𝑥)))) | 
| 86 | 83, 85 | breq12d 5155 | . . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑥 − 𝑥))) ↔ (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 87 | 81, 86 | syl5ibcom 245 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 88 | 87 | imp 406 | . . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) | 
| 89 | 88 | a1d 25 | . . . . . 6
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 90 |  | breq1 5145 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → (𝑎 < 𝑏 ↔ 𝑦 < 𝑏)) | 
| 91 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑦 → (𝐹‘𝑎) = (𝐹‘𝑦)) | 
| 92 | 91 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑦 → ((𝐹‘𝑏) − (𝐹‘𝑎)) = ((𝐹‘𝑏) − (𝐹‘𝑦))) | 
| 93 | 92 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) = (abs‘((𝐹‘𝑏) − (𝐹‘𝑦)))) | 
| 94 |  | oveq2 7440 | . . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑦 → (𝑏 − 𝑎) = (𝑏 − 𝑦)) | 
| 95 | 94 | fveq2d 6909 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑦 → (abs‘(𝑏 − 𝑎)) = (abs‘(𝑏 − 𝑦))) | 
| 96 | 95 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → (𝑘 · (abs‘(𝑏 − 𝑎))) = (𝑘 · (abs‘(𝑏 − 𝑦)))) | 
| 97 | 93, 96 | breq12d 5155 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))) ↔ (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦))))) | 
| 98 | 90, 97 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑎 = 𝑦 → ((𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ (𝑦 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦)))))) | 
| 99 |  | breq2 5146 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑥 → (𝑦 < 𝑏 ↔ 𝑦 < 𝑥)) | 
| 100 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑏 = 𝑥 → (𝐹‘𝑏) = (𝐹‘𝑥)) | 
| 101 | 100 | fvoveq1d 7454 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑥 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) = (abs‘((𝐹‘𝑥) − (𝐹‘𝑦)))) | 
| 102 |  | fvoveq1 7455 | . . . . . . . . . . . . 13
⊢ (𝑏 = 𝑥 → (abs‘(𝑏 − 𝑦)) = (abs‘(𝑥 − 𝑦))) | 
| 103 | 102 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑥 → (𝑘 · (abs‘(𝑏 − 𝑦))) = (𝑘 · (abs‘(𝑥 − 𝑦)))) | 
| 104 | 101, 103 | breq12d 5155 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑥 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦))) ↔ (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦))))) | 
| 105 | 99, 104 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑏 = 𝑥 → ((𝑦 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦)))) ↔ (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) | 
| 106 | 98, 105 | rspc2v 3632 | . . . . . . . . 9
⊢ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) | 
| 107 | 106 | ancoms 458 | . . . . . . . 8
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) | 
| 108 | 107 | ad2antlr 727 | . . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) | 
| 109 |  | simpr 484 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥) | 
| 110 |  | fvres 6924 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹‘𝑦)) | 
| 111 | 110 | ad2antll 729 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹‘𝑦)) | 
| 112 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵)) | 
| 113 |  | ffvelcdm 7100 | . . . . . . . . . . . . . . 15
⊢ (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ) | 
| 114 | 59, 112, 113 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ) | 
| 115 | 111, 114 | eqeltrrd 2841 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑦) ∈ ℝ) | 
| 116 | 115 | recnd 11290 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑦) ∈ ℂ) | 
| 117 | 64, 116 | abssubd 15493 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) | 
| 118 | 117 | adantr 480 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) | 
| 119 | 68 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | 
| 120 | 119 | sseld 3981 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) | 
| 121 | 119 | sseld 3981 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ)) | 
| 122 | 120, 121 | anim12d 609 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))) | 
| 123 | 122 | imp 406 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) | 
| 124 |  | recn 11246 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) | 
| 125 |  | recn 11246 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) | 
| 126 |  | abssub 15366 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
(abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) | 
| 127 | 124, 125,
126 | syl2an 596 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
(abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) | 
| 128 | 123, 127 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) | 
| 129 | 128 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) | 
| 130 | 129 | oveq2d 7448 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (𝑘 · (abs‘(𝑥 − 𝑦))) = (𝑘 · (abs‘(𝑦 − 𝑥)))) | 
| 131 | 118, 130 | breq12d 5155 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦))) ↔ (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 132 | 131 | biimpd 229 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 133 | 109, 132 | embantd 59 | . . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 134 | 108, 133 | syld 47 | . . . . . 6
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 135 |  | lttri4 11346 | . . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) | 
| 136 | 123, 135 | syl 17 | . . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) | 
| 137 | 53, 89, 134, 136 | mpjao3dan 1433 | . . . . 5
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 138 | 137 | ralrimdvva 3210 | . . . 4
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 139 | 138 | reximdva 3167 | . . 3
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) | 
| 140 | 32, 139 | mpd 15 | . 2
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) | 
| 141 | 15, 140, 6, 4 | ltlecasei 11370 | 1
⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |