MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1lip1 Structured version   Visualization version   GIF version

Theorem c1lip1 26037
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
c1lip1.a (𝜑𝐴 ∈ ℝ)
c1lip1.b (𝜑𝐵 ∈ ℝ)
c1lip1.f (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
c1lip1.dv (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1lip1.cn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
c1lip1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑘   𝑥,𝐴,𝑦,𝑘   𝑥,𝐵,𝑦,𝑘   𝑥,𝐹,𝑦,𝑘

Proof of Theorem c1lip1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 11264 . . . 4 0 ∈ ℝ
21ne0ii 4343 . . 3 ℝ ≠ ∅
3 ral0 4512 . . . . 5 𝑥 ∈ ∅ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))
4 c1lip1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
54rexrd 11312 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
6 c1lip1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
76rexrd 11312 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
8 icc0 13436 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
95, 7, 8syl2anc 584 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
109biimpar 477 . . . . . 6 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
1110raleqdv 3325 . . . . 5 ((𝜑𝐵 < 𝐴) → (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))) ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
123, 11mpbiri 258 . . . 4 ((𝜑𝐵 < 𝐴) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
1312ralrimivw 3149 . . 3 ((𝜑𝐵 < 𝐴) → ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
14 r19.2z 4494 . . 3 ((ℝ ≠ ∅ ∧ ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
152, 13, 14sylancr 587 . 2 ((𝜑𝐵 < 𝐴) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
164adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
176adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
18 simpr 484 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝐵)
19 c1lip1.f . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
2019adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐹 ∈ (ℂ ↑pm ℝ))
21 c1lip1.dv . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
2221adantr 480 . . . . 5 ((𝜑𝐴𝐵) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
23 c1lip1.cn . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
2423adantr 480 . . . . 5 ((𝜑𝐴𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
25 eqid 2736 . . . . 5 sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
2616, 17, 18, 20, 22, 24, 25c1liplem1 26036 . . . 4 ((𝜑𝐴𝐵) → (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
27 oveq1 7439 . . . . . . . 8 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (𝑘 · (abs‘(𝑏𝑎))) = (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))
2827breq2d 5154 . . . . . . 7 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎)))))
2928imbi2d 340 . . . . . 6 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
30292ralbidv 3220 . . . . 5 (𝑘 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))))
3130rspcev 3621 . . . 4 ((sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) · (abs‘(𝑏𝑎))))) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))))
3226, 31syl 17 . . 3 ((𝜑𝐴𝐵) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))))
33 breq1 5145 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 < 𝑏𝑥 < 𝑏))
34 fveq2 6905 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
3534oveq2d 7448 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑥)))
3635fveq2d 6909 . . . . . . . . . . 11 (𝑎 = 𝑥 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑥))))
37 oveq2 7440 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑏𝑎) = (𝑏𝑥))
3837fveq2d 6909 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑥)))
3938oveq2d 7448 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑘 · (abs‘(𝑏𝑎))) = (𝑘 · (abs‘(𝑏𝑥))))
4036, 39breq12d 5155 . . . . . . . . . 10 (𝑎 = 𝑥 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥)))))
4133, 40imbi12d 344 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑥 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥))))))
42 breq2 5146 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑥 < 𝑏𝑥 < 𝑦))
43 fveq2 6905 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (𝐹𝑏) = (𝐹𝑦))
4443fvoveq1d 7454 . . . . . . . . . . 11 (𝑏 = 𝑦 → (abs‘((𝐹𝑏) − (𝐹𝑥))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
45 fvoveq1 7455 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (abs‘(𝑏𝑥)) = (abs‘(𝑦𝑥)))
4645oveq2d 7448 . . . . . . . . . . 11 (𝑏 = 𝑦 → (𝑘 · (abs‘(𝑏𝑥))) = (𝑘 · (abs‘(𝑦𝑥))))
4744, 46breq12d 5155 . . . . . . . . . 10 (𝑏 = 𝑦 → ((abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
4842, 47imbi12d 344 . . . . . . . . 9 (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑏𝑥)))) ↔ (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
4941, 48rspc2v 3632 . . . . . . . 8 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
5049ad2antlr 727 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))))
51 pm2.27 42 . . . . . . . 8 (𝑥 < 𝑦 → ((𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
5251adantl 481 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
5350, 52syld 47 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
54 0le0 12368 . . . . . . . . . 10 0 ≤ 0
55 fvres 6924 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
5655ad2antrl 728 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
57 cncff 24920 . . . . . . . . . . . . . . . . . 18 ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
5823, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
5958ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
60 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
61 ffvelcdm 7100 . . . . . . . . . . . . . . . 16 (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
6259, 60, 61syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
6356, 62eqeltrrd 2841 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑥) ∈ ℝ)
6463recnd 11290 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑥) ∈ ℂ)
6564subidd 11609 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹𝑥) − (𝐹𝑥)) = 0)
6665abs00bd 15331 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑥))) = 0)
67 iccssre 13470 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
684, 6, 67syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
6968ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ)
70 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵))
7169, 70sseldd 3983 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ)
7271recnd 11290 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ)
7372subidd 11609 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥𝑥) = 0)
7473abs00bd 15331 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥𝑥)) = 0)
7574oveq2d 7448 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥𝑥))) = (𝑘 · 0))
76 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℝ)
7776recnd 11290 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℂ)
7877mul01d 11461 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · 0) = 0)
7975, 78eqtrd 2776 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥𝑥))) = 0)
8066, 79breq12d 5155 . . . . . . . . . 10 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))) ↔ 0 ≤ 0))
8154, 80mpbiri 258 . . . . . . . . 9 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))))
82 fveq2 6905 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
8382fvoveq1d 7454 . . . . . . . . . 10 (𝑥 = 𝑦 → (abs‘((𝐹𝑥) − (𝐹𝑥))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
84 fvoveq1 7455 . . . . . . . . . . 11 (𝑥 = 𝑦 → (abs‘(𝑥𝑥)) = (abs‘(𝑦𝑥)))
8584oveq2d 7448 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑘 · (abs‘(𝑥𝑥))) = (𝑘 · (abs‘(𝑦𝑥))))
8683, 85breq12d 5155 . . . . . . . . 9 (𝑥 = 𝑦 → ((abs‘((𝐹𝑥) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑥𝑥))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
8781, 86syl5ibcom 245 . . . . . . . 8 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
8887imp 406 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
8988a1d 25 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
90 breq1 5145 . . . . . . . . . . 11 (𝑎 = 𝑦 → (𝑎 < 𝑏𝑦 < 𝑏))
91 fveq2 6905 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝐹𝑎) = (𝐹𝑦))
9291oveq2d 7448 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑦)))
9392fveq2d 6909 . . . . . . . . . . . 12 (𝑎 = 𝑦 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑦))))
94 oveq2 7440 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝑏𝑎) = (𝑏𝑦))
9594fveq2d 6909 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑦)))
9695oveq2d 7448 . . . . . . . . . . . 12 (𝑎 = 𝑦 → (𝑘 · (abs‘(𝑏𝑎))) = (𝑘 · (abs‘(𝑏𝑦))))
9793, 96breq12d 5155 . . . . . . . . . . 11 (𝑎 = 𝑦 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦)))))
9890, 97imbi12d 344 . . . . . . . . . 10 (𝑎 = 𝑦 → ((𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) ↔ (𝑦 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦))))))
99 breq2 5146 . . . . . . . . . . 11 (𝑏 = 𝑥 → (𝑦 < 𝑏𝑦 < 𝑥))
100 fveq2 6905 . . . . . . . . . . . . 13 (𝑏 = 𝑥 → (𝐹𝑏) = (𝐹𝑥))
101100fvoveq1d 7454 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (abs‘((𝐹𝑏) − (𝐹𝑦))) = (abs‘((𝐹𝑥) − (𝐹𝑦))))
102 fvoveq1 7455 . . . . . . . . . . . . 13 (𝑏 = 𝑥 → (abs‘(𝑏𝑦)) = (abs‘(𝑥𝑦)))
103102oveq2d 7448 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (𝑘 · (abs‘(𝑏𝑦))) = (𝑘 · (abs‘(𝑥𝑦))))
104101, 103breq12d 5155 . . . . . . . . . . 11 (𝑏 = 𝑥 → ((abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦))) ↔ (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦)))))
10599, 104imbi12d 344 . . . . . . . . . 10 (𝑏 = 𝑥 → ((𝑦 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑏𝑦)))) ↔ (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
10698, 105rspc2v 3632 . . . . . . . . 9 ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
107106ancoms 458 . . . . . . . 8 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
108107ad2antlr 727 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))))))
109 simpr 484 . . . . . . . 8 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
110 fvres 6924 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
111110ad2antll 729 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
112 simpr 484 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
113 ffvelcdm 7100 . . . . . . . . . . . . . . 15 (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
11459, 112, 113syl2an 596 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
115111, 114eqeltrrd 2841 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑦) ∈ ℝ)
116115recnd 11290 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹𝑦) ∈ ℂ)
11764, 116abssubd 15493 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑥) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
118117adantr 480 . . . . . . . . . 10 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘((𝐹𝑥) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑥))))
11968ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
120119sseld 3981 . . . . . . . . . . . . . . 15 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ))
121119sseld 3981 . . . . . . . . . . . . . . 15 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ))
122120, 121anim12d 609 . . . . . . . . . . . . . 14 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
123122imp 406 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
124 recn 11246 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
125 recn 11246 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
126 abssub 15366 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
127124, 125, 126syl2an 596 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
128123, 127syl 17 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
129128adantr 480 . . . . . . . . . . 11 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
130129oveq2d 7448 . . . . . . . . . 10 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (𝑘 · (abs‘(𝑥𝑦))) = (𝑘 · (abs‘(𝑦𝑥))))
131118, 130breq12d 5155 . . . . . . . . 9 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))) ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
132131biimpd 229 . . . . . . . 8 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
133109, 132embantd 59 . . . . . . 7 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((𝑦 < 𝑥 → (abs‘((𝐹𝑥) − (𝐹𝑦))) ≤ (𝑘 · (abs‘(𝑥𝑦)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
134108, 133syld 47 . . . . . 6 (((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
135 lttri4 11346 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
136123, 135syl 17 . . . . . 6 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
13753, 89, 134, 136mpjao3dan 1433 . . . . 5 ((((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
138137ralrimdvva 3210 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑘 ∈ ℝ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
139138reximdva 3167 . . 3 ((𝜑𝐴𝐵) → (∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑘 · (abs‘(𝑏𝑎)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥)))))
14032, 139mpd 15 . 2 ((𝜑𝐴𝐵) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
14115, 140, 6, 4ltlecasei 11370 1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  wss 3950  c0 4332   class class class wbr 5142  cres 5686  cima 5687  wf 6556  cfv 6560  (class class class)co 7432  pm cpm 8868  supcsup 9481  cc 11154  cr 11155  0cc0 11156   · cmul 11161  *cxr 11295   < clt 11296  cle 11297  cmin 11493  [,]cicc 13391  abscabs 15274  cnccncf 24903   D cdv 25899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-cmp 23396  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903
This theorem is referenced by:  c1lip2  26038
  Copyright terms: Public domain W3C validator