Step | Hyp | Ref
| Expression |
1 | | 0re 10977 |
. . . 4
⊢ 0 ∈
ℝ |
2 | 1 | ne0ii 4271 |
. . 3
⊢ ℝ
≠ ∅ |
3 | | ral0 4443 |
. . . . 5
⊢
∀𝑥 ∈
∅ ∀𝑦 ∈
(𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))) |
4 | | c1lip1.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
6 | | c1lip1.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
7 | 6 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
8 | | icc0 13127 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
9 | 5, 7, 8 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
10 | 9 | biimpar 478 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅) |
11 | 10 | raleqdv 3348 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))) ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
12 | 3, 11 | mpbiri 257 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
13 | 12 | ralrimivw 3104 |
. . 3
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
14 | | r19.2z 4425 |
. . 3
⊢ ((ℝ
≠ ∅ ∧ ∀𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
15 | 2, 13, 14 | sylancr 587 |
. 2
⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
16 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
17 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
18 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) |
19 | | c1lip1.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
20 | 19 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
21 | | c1lip1.dv |
. . . . . 6
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
22 | 21 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
23 | | c1lip1.cn |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
24 | 23 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
25 | | eqid 2738 |
. . . . 5
⊢ sup((abs
“ ((ℝ D 𝐹)
“ (𝐴[,]𝐵))), ℝ, < ) = sup((abs
“ ((ℝ D 𝐹)
“ (𝐴[,]𝐵))), ℝ, <
) |
26 | 16, 17, 18, 20, 22, 24, 25 | c1liplem1 25160 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧
∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))))) |
27 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (𝑘 · (abs‘(𝑏 − 𝑎))) = (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))) |
28 | 27 | breq2d 5086 |
. . . . . . 7
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) →
((abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))) ↔ (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎))))) |
29 | 28 | imbi2d 341 |
. . . . . 6
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → ((𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ (𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))))) |
30 | 29 | 2ralbidv 3129 |
. . . . 5
⊢ (𝑘 = sup((abs “ ((ℝ D
𝐹) “ (𝐴[,]𝐵))), ℝ, < ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎)))))) |
31 | 30 | rspcev 3561 |
. . . 4
⊢
((sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ ∧
∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ·
(abs‘(𝑏 − 𝑎))))) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))))) |
32 | 26, 31 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))))) |
33 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑎 < 𝑏 ↔ 𝑥 < 𝑏)) |
34 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) |
35 | 34 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → ((𝐹‘𝑏) − (𝐹‘𝑎)) = ((𝐹‘𝑏) − (𝐹‘𝑥))) |
36 | 35 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) = (abs‘((𝐹‘𝑏) − (𝐹‘𝑥)))) |
37 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (𝑏 − 𝑎) = (𝑏 − 𝑥)) |
38 | 37 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (abs‘(𝑏 − 𝑎)) = (abs‘(𝑏 − 𝑥))) |
39 | 38 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑘 · (abs‘(𝑏 − 𝑎))) = (𝑘 · (abs‘(𝑏 − 𝑥)))) |
40 | 36, 39 | breq12d 5087 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))) ↔ (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥))))) |
41 | 33, 40 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ (𝑥 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥)))))) |
42 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → (𝑥 < 𝑏 ↔ 𝑥 < 𝑦)) |
43 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑦 → (𝐹‘𝑏) = (𝐹‘𝑦)) |
44 | 43 | fvoveq1d 7297 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) |
45 | | fvoveq1 7298 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑦 → (abs‘(𝑏 − 𝑥)) = (abs‘(𝑦 − 𝑥))) |
46 | 45 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → (𝑘 · (abs‘(𝑏 − 𝑥))) = (𝑘 · (abs‘(𝑦 − 𝑥)))) |
47 | 44, 46 | breq12d 5087 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥))) ↔ (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
48 | 42, 47 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑏 − 𝑥)))) ↔ (𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))))) |
49 | 41, 48 | rspc2v 3570 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))))) |
50 | 49 | ad2antlr 724 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))))) |
51 | | pm2.27 42 |
. . . . . . . 8
⊢ (𝑥 < 𝑦 → ((𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
52 | 51 | adantl 482 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
53 | 50, 52 | syld 47 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
54 | | 0le0 12074 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
55 | | fvres 6793 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹‘𝑥)) |
56 | 55 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹‘𝑥)) |
57 | | cncff 24056 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ) |
58 | 23, 57 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ) |
59 | 58 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ) |
60 | | simpl 483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
61 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ) |
62 | 59, 60, 61 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ) |
63 | 56, 62 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑥) ∈ ℝ) |
64 | 63 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑥) ∈ ℂ) |
65 | 64 | subidd 11320 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹‘𝑥) − (𝐹‘𝑥)) = 0) |
66 | 65 | abs00bd 15003 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) = 0) |
67 | | iccssre 13161 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
68 | 4, 6, 67 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
69 | 68 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ) |
70 | | simprl 768 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵)) |
71 | 69, 70 | sseldd 3922 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ) |
72 | 71 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ) |
73 | 72 | subidd 11320 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 − 𝑥) = 0) |
74 | 73 | abs00bd 15003 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥 − 𝑥)) = 0) |
75 | 74 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥 − 𝑥))) = (𝑘 · 0)) |
76 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℝ) |
77 | 76 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑘 ∈ ℂ) |
78 | 77 | mul01d 11174 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · 0) = 0) |
79 | 75, 78 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑘 · (abs‘(𝑥 − 𝑥))) = 0) |
80 | 66, 79 | breq12d 5087 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑥 − 𝑥))) ↔ 0 ≤ 0)) |
81 | 54, 80 | mpbiri 257 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑥 − 𝑥)))) |
82 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
83 | 82 | fvoveq1d 7297 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) |
84 | | fvoveq1 7298 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (abs‘(𝑥 − 𝑥)) = (abs‘(𝑦 − 𝑥))) |
85 | 84 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑘 · (abs‘(𝑥 − 𝑥))) = (𝑘 · (abs‘(𝑦 − 𝑥)))) |
86 | 83, 85 | breq12d 5087 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑥 − 𝑥))) ↔ (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
87 | 81, 86 | syl5ibcom 244 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
88 | 87 | imp 407 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
89 | 88 | a1d 25 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 = 𝑦) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
90 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → (𝑎 < 𝑏 ↔ 𝑦 < 𝑏)) |
91 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑦 → (𝐹‘𝑎) = (𝐹‘𝑦)) |
92 | 91 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑦 → ((𝐹‘𝑏) − (𝐹‘𝑎)) = ((𝐹‘𝑏) − (𝐹‘𝑦))) |
93 | 92 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) = (abs‘((𝐹‘𝑏) − (𝐹‘𝑦)))) |
94 | | oveq2 7283 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑦 → (𝑏 − 𝑎) = (𝑏 − 𝑦)) |
95 | 94 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑦 → (abs‘(𝑏 − 𝑎)) = (abs‘(𝑏 − 𝑦))) |
96 | 95 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → (𝑘 · (abs‘(𝑏 − 𝑎))) = (𝑘 · (abs‘(𝑏 − 𝑦)))) |
97 | 93, 96 | breq12d 5087 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎))) ↔ (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦))))) |
98 | 90, 97 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑦 → ((𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) ↔ (𝑦 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦)))))) |
99 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑥 → (𝑦 < 𝑏 ↔ 𝑦 < 𝑥)) |
100 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑥 → (𝐹‘𝑏) = (𝐹‘𝑥)) |
101 | 100 | fvoveq1d 7297 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑥 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) = (abs‘((𝐹‘𝑥) − (𝐹‘𝑦)))) |
102 | | fvoveq1 7298 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑥 → (abs‘(𝑏 − 𝑦)) = (abs‘(𝑥 − 𝑦))) |
103 | 102 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑥 → (𝑘 · (abs‘(𝑏 − 𝑦))) = (𝑘 · (abs‘(𝑥 − 𝑦)))) |
104 | 101, 103 | breq12d 5087 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑥 → ((abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦))) ↔ (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦))))) |
105 | 99, 104 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑥 → ((𝑦 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑏 − 𝑦)))) ↔ (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) |
106 | 98, 105 | rspc2v 3570 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) |
107 | 106 | ancoms 459 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) |
108 | 107 | ad2antlr 724 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))))) |
109 | | simpr 485 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥) |
110 | | fvres 6793 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹‘𝑦)) |
111 | 110 | ad2antll 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹‘𝑦)) |
112 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵)) |
113 | | ffvelrn 6959 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ) |
114 | 59, 112, 113 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ) |
115 | 111, 114 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑦) ∈ ℝ) |
116 | 115 | recnd 11003 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑦) ∈ ℂ) |
117 | 64, 116 | abssubd 15165 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) |
118 | 117 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) |
119 | 68 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
120 | 119 | sseld 3920 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
121 | 119 | sseld 3920 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ)) |
122 | 120, 121 | anim12d 609 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))) |
123 | 122 | imp 407 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) |
124 | | recn 10961 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
125 | | recn 10961 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
126 | | abssub 15038 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
(abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) |
127 | 124, 125,
126 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
(abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) |
128 | 123, 127 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) |
129 | 128 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) |
130 | 129 | oveq2d 7291 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (𝑘 · (abs‘(𝑥 − 𝑦))) = (𝑘 · (abs‘(𝑦 − 𝑥)))) |
131 | 118, 130 | breq12d 5087 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦))) ↔ (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
132 | 131 | biimpd 228 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
133 | 109, 132 | embantd 59 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → ((𝑦 < 𝑥 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑦))) ≤ (𝑘 · (abs‘(𝑥 − 𝑦)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
134 | 108, 133 | syld 47 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 < 𝑥) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
135 | | lttri4 11059 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
136 | 123, 135 | syl 17 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
137 | 53, 89, 134, 136 | mpjao3dan 1430 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
138 | 137 | ralrimdvva 3125 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑘 ∈ ℝ) → (∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
139 | 138 | reximdva 3203 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (∃𝑘 ∈ ℝ ∀𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)(𝑎 < 𝑏 → (abs‘((𝐹‘𝑏) − (𝐹‘𝑎))) ≤ (𝑘 · (abs‘(𝑏 − 𝑎)))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
140 | 32, 139 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
141 | 15, 140, 6, 4 | ltlecasei 11083 |
1
⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |