MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddi Structured version   Visualization version   GIF version

Theorem xadddi 13274
Description: Distributive property for extended real addition and multiplication. Like xaddass 13228, this has an unusual domain of correctness due to counterexamples like (+∞ · (2 − 1)) = -∞ ≠ ((+∞ · 2) − (+∞ · 1)) = (+∞ − +∞) = 0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddi ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))

Proof of Theorem xadddi
StepHypRef Expression
1 xadddilem 13273 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
2 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ*)
3 simpl3 1194 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ*)
4 xaddcl 13218 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
52, 3, 4syl2anc 585 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
6 xmul02 13247 . . . . 5 ((𝐵 +𝑒 𝐶) ∈ ℝ* → (0 ·e (𝐵 +𝑒 𝐶)) = 0)
75, 6syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = 0)
8 0xr 11261 . . . . 5 0 ∈ ℝ*
9 xaddrid 13220 . . . . 5 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
108, 9ax-mp 5 . . . 4 (0 +𝑒 0) = 0
117, 10eqtr4di 2791 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = (0 +𝑒 0))
12 simpr 486 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = 𝐴)
1312oveq1d 7424 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e (𝐵 +𝑒 𝐶)))
14 xmul02 13247 . . . . . 6 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
152, 14syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐵) = 0)
1612oveq1d 7424 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐵) = (𝐴 ·e 𝐵))
1715, 16eqtr3d 2775 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = (𝐴 ·e 𝐵))
18 xmul02 13247 . . . . . 6 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
193, 18syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐶) = 0)
2012oveq1d 7424 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
2119, 20eqtr3d 2775 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = (𝐴 ·e 𝐶))
2217, 21oveq12d 7427 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 +𝑒 0) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
2311, 13, 223eqtr3d 2781 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
24 simp1 1137 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ)
2524adantr 482 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
26 rexneg 13190 . . . . . . 7 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
27 renegcl 11523 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2826, 27eqeltrd 2834 . . . . . 6 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
2925, 28syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒𝐴 ∈ ℝ)
30 simpl2 1193 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
31 simpl3 1194 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐶 ∈ ℝ*)
3224rexrd 11264 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
33 xlt0neg1 13198 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
3432, 33syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
3534biimpa 478 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 0 < -𝑒𝐴)
36 xadddilem 13273 . . . . 5 (((-𝑒𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)))
3729, 30, 31, 35, 36syl31anc 1374 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)))
3832adantr 482 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ*)
3930, 31, 4syl2anc 585 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
40 xmulneg1 13248 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)))
4138, 39, 40syl2anc 585 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)))
42 xmulneg1 13248 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
4338, 30, 42syl2anc 585 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
44 xmulneg1 13248 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐶) = -𝑒(𝐴 ·e 𝐶))
4538, 31, 44syl2anc 585 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e 𝐶) = -𝑒(𝐴 ·e 𝐶))
4643, 45oveq12d 7427 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
47 xmulcl 13252 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*)
4838, 30, 47syl2anc 585 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e 𝐵) ∈ ℝ*)
49 xmulcl 13252 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
5038, 31, 49syl2anc 585 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e 𝐶) ∈ ℝ*)
51 xnegdi 13227 . . . . . 6 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ∈ ℝ*) → -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
5248, 50, 51syl2anc 585 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
5346, 52eqtr4d 2776 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
5437, 41, 533eqtr3d 2781 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
55 xmulcl 13252 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ*)
5638, 39, 55syl2anc 585 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ*)
57 xaddcl 13218 . . . . 5 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*)
5848, 50, 57syl2anc 585 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*)
59 xneg11 13194 . . . 4 (((𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ* ∧ ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*) → (-𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ↔ (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))))
6056, 58, 59syl2anc 585 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ↔ (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))))
6154, 60mpbid 231 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
62 0re 11216 . . 3 0 ∈ ℝ
63 lttri4 11298 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ∨ 0 = 𝐴𝐴 < 0))
6462, 24, 63sylancr 588 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (0 < 𝐴 ∨ 0 = 𝐴𝐴 < 0))
651, 23, 61, 64mpjao3dan 1432 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3o 1087  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5149  (class class class)co 7409  cr 11109  0cc0 11110  *cxr 11247   < clt 11248  -cneg 11445  -𝑒cxne 13089   +𝑒 cxad 13090   ·e cxmu 13091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-xneg 13092  df-xadd 13093  df-xmul 13094
This theorem is referenced by:  xadddir  13275  xadddi2  13276
  Copyright terms: Public domain W3C validator