MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddi Structured version   Visualization version   GIF version

Theorem xadddi 13334
Description: Distributive property for extended real addition and multiplication. Like xaddass 13288, this has an unusual domain of correctness due to counterexamples like (+∞ · (2 − 1)) = -∞ ≠ ((+∞ · 2) − (+∞ · 1)) = (+∞ − +∞) = 0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddi ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))

Proof of Theorem xadddi
StepHypRef Expression
1 xadddilem 13333 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
2 simpl2 1191 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ*)
3 simpl3 1192 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ*)
4 xaddcl 13278 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
52, 3, 4syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
6 xmul02 13307 . . . . 5 ((𝐵 +𝑒 𝐶) ∈ ℝ* → (0 ·e (𝐵 +𝑒 𝐶)) = 0)
75, 6syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = 0)
8 0xr 11306 . . . . 5 0 ∈ ℝ*
9 xaddrid 13280 . . . . 5 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
108, 9ax-mp 5 . . . 4 (0 +𝑒 0) = 0
117, 10eqtr4di 2793 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = (0 +𝑒 0))
12 simpr 484 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = 𝐴)
1312oveq1d 7446 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e (𝐵 +𝑒 𝐶)))
14 xmul02 13307 . . . . . 6 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
152, 14syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐵) = 0)
1612oveq1d 7446 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐵) = (𝐴 ·e 𝐵))
1715, 16eqtr3d 2777 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = (𝐴 ·e 𝐵))
18 xmul02 13307 . . . . . 6 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
193, 18syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐶) = 0)
2012oveq1d 7446 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
2119, 20eqtr3d 2777 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = (𝐴 ·e 𝐶))
2217, 21oveq12d 7449 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 +𝑒 0) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
2311, 13, 223eqtr3d 2783 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
24 simp1 1135 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ)
2524adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
26 rexneg 13250 . . . . . . 7 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
27 renegcl 11570 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2826, 27eqeltrd 2839 . . . . . 6 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
2925, 28syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒𝐴 ∈ ℝ)
30 simpl2 1191 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
31 simpl3 1192 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐶 ∈ ℝ*)
3224rexrd 11309 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
33 xlt0neg1 13258 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
3432, 33syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
3534biimpa 476 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 0 < -𝑒𝐴)
36 xadddilem 13333 . . . . 5 (((-𝑒𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)))
3729, 30, 31, 35, 36syl31anc 1372 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)))
3832adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ*)
3930, 31, 4syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
40 xmulneg1 13308 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)))
4138, 39, 40syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)))
42 xmulneg1 13308 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
4338, 30, 42syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
44 xmulneg1 13308 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐶) = -𝑒(𝐴 ·e 𝐶))
4538, 31, 44syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e 𝐶) = -𝑒(𝐴 ·e 𝐶))
4643, 45oveq12d 7449 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
47 xmulcl 13312 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*)
4838, 30, 47syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e 𝐵) ∈ ℝ*)
49 xmulcl 13312 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
5038, 31, 49syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e 𝐶) ∈ ℝ*)
51 xnegdi 13287 . . . . . 6 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ∈ ℝ*) → -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
5248, 50, 51syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
5346, 52eqtr4d 2778 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
5437, 41, 533eqtr3d 2783 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
55 xmulcl 13312 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ*)
5638, 39, 55syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ*)
57 xaddcl 13278 . . . . 5 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*)
5848, 50, 57syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*)
59 xneg11 13254 . . . 4 (((𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ* ∧ ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*) → (-𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ↔ (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))))
6056, 58, 59syl2anc 584 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ↔ (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))))
6154, 60mpbid 232 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
62 0re 11261 . . 3 0 ∈ ℝ
63 lttri4 11343 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ∨ 0 = 𝐴𝐴 < 0))
6462, 24, 63sylancr 587 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (0 < 𝐴 ∨ 0 = 𝐴𝐴 < 0))
651, 23, 61, 64mpjao3dan 1431 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  *cxr 11292   < clt 11293  -cneg 11491  -𝑒cxne 13149   +𝑒 cxad 13150   ·e cxmu 13151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-xneg 13152  df-xadd 13153  df-xmul 13154
This theorem is referenced by:  xadddir  13335  xadddi2  13336
  Copyright terms: Public domain W3C validator