MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddi Structured version   Visualization version   GIF version

Theorem xadddi 12676
Description: Distributive property for extended real addition and multiplication. Like xaddass 12630, this has an unusual domain of correctness due to counterexamples like (+∞ · (2 − 1)) = -∞ ≠ ((+∞ · 2) − (+∞ · 1)) = (+∞ − +∞) = 0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddi ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))

Proof of Theorem xadddi
StepHypRef Expression
1 xadddilem 12675 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
2 simpl2 1184 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ*)
3 simpl3 1185 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ*)
4 xaddcl 12620 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
52, 3, 4syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
6 xmul02 12649 . . . . 5 ((𝐵 +𝑒 𝐶) ∈ ℝ* → (0 ·e (𝐵 +𝑒 𝐶)) = 0)
75, 6syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = 0)
8 0xr 10676 . . . . 5 0 ∈ ℝ*
9 xaddid1 12622 . . . . 5 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
108, 9ax-mp 5 . . . 4 (0 +𝑒 0) = 0
117, 10syl6eqr 2871 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = (0 +𝑒 0))
12 simpr 485 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = 𝐴)
1312oveq1d 7160 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e (𝐵 +𝑒 𝐶)))
14 xmul02 12649 . . . . . 6 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
152, 14syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐵) = 0)
1612oveq1d 7160 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐵) = (𝐴 ·e 𝐵))
1715, 16eqtr3d 2855 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = (𝐴 ·e 𝐵))
18 xmul02 12649 . . . . . 6 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
193, 18syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐶) = 0)
2012oveq1d 7160 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
2119, 20eqtr3d 2855 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = (𝐴 ·e 𝐶))
2217, 21oveq12d 7163 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 +𝑒 0) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
2311, 13, 223eqtr3d 2861 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
24 simp1 1128 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ)
2524adantr 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
26 rexneg 12592 . . . . . . 7 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
27 renegcl 10937 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2826, 27eqeltrd 2910 . . . . . 6 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
2925, 28syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒𝐴 ∈ ℝ)
30 simpl2 1184 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
31 simpl3 1185 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐶 ∈ ℝ*)
3224rexrd 10679 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
33 xlt0neg1 12600 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
3432, 33syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
3534biimpa 477 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 0 < -𝑒𝐴)
36 xadddilem 12675 . . . . 5 (((-𝑒𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)))
3729, 30, 31, 35, 36syl31anc 1365 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)))
3832adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ*)
3930, 31, 4syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
40 xmulneg1 12650 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)))
4138, 39, 40syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)))
42 xmulneg1 12650 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
4338, 30, 42syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
44 xmulneg1 12650 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐶) = -𝑒(𝐴 ·e 𝐶))
4538, 31, 44syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e 𝐶) = -𝑒(𝐴 ·e 𝐶))
4643, 45oveq12d 7163 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
47 xmulcl 12654 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*)
4838, 30, 47syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e 𝐵) ∈ ℝ*)
49 xmulcl 12654 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
5038, 31, 49syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e 𝐶) ∈ ℝ*)
51 xnegdi 12629 . . . . . 6 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ∈ ℝ*) → -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
5248, 50, 51syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
5346, 52eqtr4d 2856 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
5437, 41, 533eqtr3d 2861 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
55 xmulcl 12654 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ*)
5638, 39, 55syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ*)
57 xaddcl 12620 . . . . 5 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*)
5848, 50, 57syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*)
59 xneg11 12596 . . . 4 (((𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ* ∧ ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*) → (-𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ↔ (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))))
6056, 58, 59syl2anc 584 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ↔ (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))))
6154, 60mpbid 233 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
62 0re 10631 . . 3 0 ∈ ℝ
63 lttri4 10713 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ∨ 0 = 𝐴𝐴 < 0))
6462, 24, 63sylancr 587 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (0 < 𝐴 ∨ 0 = 𝐴𝐴 < 0))
651, 23, 61, 64mpjao3dan 1423 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3o 1078  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5057  (class class class)co 7145  cr 10524  0cc0 10525  *cxr 10662   < clt 10663  -cneg 10859  -𝑒cxne 12492   +𝑒 cxad 12493   ·e cxmu 12494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-xneg 12495  df-xadd 12496  df-xmul 12497
This theorem is referenced by:  xadddir  12677  xadddi2  12678
  Copyright terms: Public domain W3C validator