MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddi Structured version   Visualization version   GIF version

Theorem xadddi 12681
Description: Distributive property for extended real addition and multiplication. Like xaddass 12635, this has an unusual domain of correctness due to counterexamples like (+∞ · (2 − 1)) = -∞ ≠ ((+∞ · 2) − (+∞ · 1)) = (+∞ − +∞) = 0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddi ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))

Proof of Theorem xadddi
StepHypRef Expression
1 xadddilem 12680 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
2 simpl2 1186 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ*)
3 simpl3 1187 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ*)
4 xaddcl 12625 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
52, 3, 4syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
6 xmul02 12654 . . . . 5 ((𝐵 +𝑒 𝐶) ∈ ℝ* → (0 ·e (𝐵 +𝑒 𝐶)) = 0)
75, 6syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = 0)
8 0xr 10680 . . . . 5 0 ∈ ℝ*
9 xaddid1 12627 . . . . 5 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
108, 9ax-mp 5 . . . 4 (0 +𝑒 0) = 0
117, 10syl6eqr 2878 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = (0 +𝑒 0))
12 simpr 485 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = 𝐴)
1312oveq1d 7166 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e (𝐵 +𝑒 𝐶)))
14 xmul02 12654 . . . . . 6 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
152, 14syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐵) = 0)
1612oveq1d 7166 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐵) = (𝐴 ·e 𝐵))
1715, 16eqtr3d 2862 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = (𝐴 ·e 𝐵))
18 xmul02 12654 . . . . . 6 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
193, 18syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐶) = 0)
2012oveq1d 7166 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
2119, 20eqtr3d 2862 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = (𝐴 ·e 𝐶))
2217, 21oveq12d 7169 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 +𝑒 0) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
2311, 13, 223eqtr3d 2868 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
24 simp1 1130 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ)
2524adantr 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
26 rexneg 12597 . . . . . . 7 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
27 renegcl 10941 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2826, 27eqeltrd 2917 . . . . . 6 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
2925, 28syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒𝐴 ∈ ℝ)
30 simpl2 1186 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
31 simpl3 1187 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐶 ∈ ℝ*)
3224rexrd 10683 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
33 xlt0neg1 12605 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
3432, 33syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
3534biimpa 477 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 0 < -𝑒𝐴)
36 xadddilem 12680 . . . . 5 (((-𝑒𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)))
3729, 30, 31, 35, 36syl31anc 1367 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)))
3832adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ*)
3930, 31, 4syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
40 xmulneg1 12655 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)))
4138, 39, 40syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)))
42 xmulneg1 12655 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
4338, 30, 42syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
44 xmulneg1 12655 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐶) = -𝑒(𝐴 ·e 𝐶))
4538, 31, 44syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e 𝐶) = -𝑒(𝐴 ·e 𝐶))
4643, 45oveq12d 7169 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
47 xmulcl 12659 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*)
4838, 30, 47syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e 𝐵) ∈ ℝ*)
49 xmulcl 12659 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
5038, 31, 49syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e 𝐶) ∈ ℝ*)
51 xnegdi 12634 . . . . . 6 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ∈ ℝ*) → -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
5248, 50, 51syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
5346, 52eqtr4d 2863 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
5437, 41, 533eqtr3d 2868 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
55 xmulcl 12659 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ*)
5638, 39, 55syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ*)
57 xaddcl 12625 . . . . 5 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*)
5848, 50, 57syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*)
59 xneg11 12601 . . . 4 (((𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ* ∧ ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*) → (-𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ↔ (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))))
6056, 58, 59syl2anc 584 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ↔ (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))))
6154, 60mpbid 233 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
62 0re 10635 . . 3 0 ∈ ℝ
63 lttri4 10717 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ∨ 0 = 𝐴𝐴 < 0))
6462, 24, 63sylancr 587 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (0 < 𝐴 ∨ 0 = 𝐴𝐴 < 0))
651, 23, 61, 64mpjao3dan 1425 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3o 1080  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5062  (class class class)co 7151  cr 10528  0cc0 10529  *cxr 10666   < clt 10667  -cneg 10863  -𝑒cxne 12497   +𝑒 cxad 12498   ·e cxmu 12499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-xneg 12500  df-xadd 12501  df-xmul 12502
This theorem is referenced by:  xadddir  12682  xadddi2  12683
  Copyright terms: Public domain W3C validator