MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgfscgr Structured version   Visualization version   GIF version

Theorem tgfscgr 26929
Description: Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.d = (dist‘𝐺)
tgfscgr.t (𝜑𝑇𝑃)
tgfscgr.c (𝜑𝐶𝑃)
tgfscgr.d (𝜑𝐷𝑃)
tgfscgr.1 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
tgfscgr.2 (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
tgfscgr.3 (𝜑 → (𝑋 𝑇) = (𝐴 𝐷))
tgfscgr.4 (𝜑 → (𝑌 𝑇) = (𝐵 𝐷))
tgfscgr.5 (𝜑𝑋𝑌)
Assertion
Ref Expression
tgfscgr (𝜑 → (𝑍 𝑇) = (𝐶 𝐷))

Proof of Theorem tgfscgr
StepHypRef Expression
1 tglngval.p . . 3 𝑃 = (Base‘𝐺)
2 lnxfr.d . . 3 = (dist‘𝐺)
3 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
4 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG)
6 tglngval.x . . . 4 (𝜑𝑋𝑃)
76adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋𝑃)
8 tglngval.y . . . 4 (𝜑𝑌𝑃)
98adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌𝑃)
10 tgcolg.z . . . 4 (𝜑𝑍𝑃)
1110adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍𝑃)
12 lnxfr.a . . . 4 (𝜑𝐴𝑃)
1312adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐴𝑃)
14 lnxfr.b . . . 4 (𝜑𝐵𝑃)
1514adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵𝑃)
16 tgfscgr.c . . . 4 (𝜑𝐶𝑃)
1716adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐶𝑃)
18 tgfscgr.t . . . 4 (𝜑𝑇𝑃)
1918adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑇𝑃)
20 tgfscgr.d . . . 4 (𝜑𝐷𝑃)
2120adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐷𝑃)
22 tgfscgr.5 . . . 4 (𝜑𝑋𝑌)
2322adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋𝑌)
24 simpr 485 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍))
25 lnxfr.r . . . 4 = (cgrG‘𝐺)
26 tgfscgr.2 . . . . 5 (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
2726adantr 481 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
281, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27, 24tgbtwnxfr 26891 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ (𝐴𝐼𝐶))
291, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27cgr3simp1 26881 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝑋 𝑌) = (𝐴 𝐵))
301, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27cgr3simp2 26882 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝑌 𝑍) = (𝐵 𝐶))
31 tgfscgr.3 . . . 4 (𝜑 → (𝑋 𝑇) = (𝐴 𝐷))
3231adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝑋 𝑇) = (𝐴 𝐷))
33 tgfscgr.4 . . . 4 (𝜑 → (𝑌 𝑇) = (𝐵 𝐷))
3433adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝑌 𝑇) = (𝐵 𝐷))
351, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 24, 28, 29, 30, 32, 34axtg5seg 26826 . 2 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝑍 𝑇) = (𝐶 𝐷))
364adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐺 ∈ TarskiG)
378adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑌𝑃)
386adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋𝑃)
3910adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑍𝑃)
4014adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐵𝑃)
4112adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴𝑃)
4216adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐶𝑃)
4318adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑇𝑃)
4420adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐷𝑃)
4522necomd 2999 . . . 4 (𝜑𝑌𝑋)
4645adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑌𝑋)
47 simpr 485 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ (𝑌𝐼𝑍))
4826adantr 481 . . . . 5 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
491, 2, 3, 25, 36, 38, 37, 39, 41, 40, 42, 48cgr3swap12 26884 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ⟨“𝑌𝑋𝑍”⟩ ⟨“𝐵𝐴𝐶”⟩)
501, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49, 47tgbtwnxfr 26891 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ (𝐵𝐼𝐶))
511, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49cgr3simp1 26881 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝑌 𝑋) = (𝐵 𝐴))
521, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49cgr3simp2 26882 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝑋 𝑍) = (𝐴 𝐶))
5333adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝑌 𝑇) = (𝐵 𝐷))
5431adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝑋 𝑇) = (𝐴 𝐷))
551, 2, 3, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50, 51, 52, 53, 54axtg5seg 26826 . 2 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝑍 𝑇) = (𝐶 𝐷))
564adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG)
576adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋𝑃)
5810adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍𝑃)
598adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌𝑃)
6018adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑇𝑃)
6112adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴𝑃)
6216adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶𝑃)
6314adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵𝑃)
6420adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐷𝑃)
65 simpr 485 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌))
6626adantr 481 . . . . 5 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
671, 2, 3, 25, 56, 57, 59, 58, 61, 63, 62, 66cgr3swap23 26885 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝐶𝐵”⟩)
681, 2, 3, 25, 56, 57, 58, 59, 61, 62, 63, 67, 65tgbtwnxfr 26891 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ (𝐴𝐼𝐵))
691, 2, 3, 25, 56, 57, 59, 58, 61, 63, 62, 66cgr3simp1 26881 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑋 𝑌) = (𝐴 𝐵))
701, 2, 3, 25, 56, 57, 58, 59, 61, 62, 63, 67cgr3simp2 26882 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑍 𝑌) = (𝐶 𝐵))
7131adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑋 𝑇) = (𝐴 𝐷))
7233adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑌 𝑇) = (𝐵 𝐷))
731, 2, 3, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72tgifscgr 26869 . 2 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑍 𝑇) = (𝐶 𝐷))
74 tgfscgr.1 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
75 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
761, 75, 3, 4, 6, 10, 8tgcolg 26915 . . 3 (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
7774, 76mpbid 231 . 2 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
7835, 55, 73, 77mpjao3dan 1430 1 (𝜑 → (𝑍 𝑇) = (𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3o 1085   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  ⟨“cs3 14555  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795  cgrGccgrg 26871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-cgrg 26872
This theorem is referenced by:  lncgr  26930  mirtrcgr  27044  symquadlem  27050  cgracgr  27179  cgraswap  27181  cgrg3col4  27214
  Copyright terms: Public domain W3C validator