Proof of Theorem tgfscgr
Step | Hyp | Ref
| Expression |
1 | | tglngval.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
2 | | lnxfr.d |
. . 3
⊢ − =
(dist‘𝐺) |
3 | | tglngval.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
4 | | tglngval.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG) |
6 | | tglngval.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
7 | 6 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋 ∈ 𝑃) |
8 | | tglngval.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
9 | 8 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ 𝑃) |
10 | | tgcolg.z |
. . . 4
⊢ (𝜑 → 𝑍 ∈ 𝑃) |
11 | 10 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍 ∈ 𝑃) |
12 | | lnxfr.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
13 | 12 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐴 ∈ 𝑃) |
14 | | lnxfr.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
15 | 14 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ 𝑃) |
16 | | tgfscgr.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
17 | 16 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐶 ∈ 𝑃) |
18 | | tgfscgr.t |
. . . 4
⊢ (𝜑 → 𝑇 ∈ 𝑃) |
19 | 18 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑇 ∈ 𝑃) |
20 | | tgfscgr.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
21 | 20 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐷 ∈ 𝑃) |
22 | | tgfscgr.5 |
. . . 4
⊢ (𝜑 → 𝑋 ≠ 𝑌) |
23 | 22 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋 ≠ 𝑌) |
24 | | simpr 485 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍)) |
25 | | lnxfr.r |
. . . 4
⊢ ∼ =
(cgrG‘𝐺) |
26 | | tgfscgr.2 |
. . . . 5
⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
27 | 26 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
28 | 1, 2, 3, 25, 5, 7,
9, 11, 13, 15, 17, 27, 24 | tgbtwnxfr 26891 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
29 | 1, 2, 3, 25, 5, 7,
9, 11, 13, 15, 17, 27 | cgr3simp1 26881 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → (𝑋 − 𝑌) = (𝐴 − 𝐵)) |
30 | 1, 2, 3, 25, 5, 7,
9, 11, 13, 15, 17, 27 | cgr3simp2 26882 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → (𝑌 − 𝑍) = (𝐵 − 𝐶)) |
31 | | tgfscgr.3 |
. . . 4
⊢ (𝜑 → (𝑋 − 𝑇) = (𝐴 − 𝐷)) |
32 | 31 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → (𝑋 − 𝑇) = (𝐴 − 𝐷)) |
33 | | tgfscgr.4 |
. . . 4
⊢ (𝜑 → (𝑌 − 𝑇) = (𝐵 − 𝐷)) |
34 | 33 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → (𝑌 − 𝑇) = (𝐵 − 𝐷)) |
35 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 24, 28, 29, 30, 32, 34 | axtg5seg 26826 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → (𝑍 − 𝑇) = (𝐶 − 𝐷)) |
36 | 4 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐺 ∈ TarskiG) |
37 | 8 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑌 ∈ 𝑃) |
38 | 6 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ 𝑃) |
39 | 10 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑍 ∈ 𝑃) |
40 | 14 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐵 ∈ 𝑃) |
41 | 12 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ 𝑃) |
42 | 16 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐶 ∈ 𝑃) |
43 | 18 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑇 ∈ 𝑃) |
44 | 20 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐷 ∈ 𝑃) |
45 | 22 | necomd 2999 |
. . . 4
⊢ (𝜑 → 𝑌 ≠ 𝑋) |
46 | 45 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑌 ≠ 𝑋) |
47 | | simpr 485 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ (𝑌𝐼𝑍)) |
48 | 26 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
49 | 1, 2, 3, 25, 36, 38, 37, 39, 41, 40, 42, 48 | cgr3swap12 26884 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 〈“𝑌𝑋𝑍”〉 ∼ 〈“𝐵𝐴𝐶”〉) |
50 | 1, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49, 47 | tgbtwnxfr 26891 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ (𝐵𝐼𝐶)) |
51 | 1, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49 | cgr3simp1 26881 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → (𝑌 − 𝑋) = (𝐵 − 𝐴)) |
52 | 1, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49 | cgr3simp2 26882 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → (𝑋 − 𝑍) = (𝐴 − 𝐶)) |
53 | 33 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → (𝑌 − 𝑇) = (𝐵 − 𝐷)) |
54 | 31 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → (𝑋 − 𝑇) = (𝐴 − 𝐷)) |
55 | 1, 2, 3, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50, 51, 52, 53, 54 | axtg5seg 26826 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → (𝑍 − 𝑇) = (𝐶 − 𝐷)) |
56 | 4 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG) |
57 | 6 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋 ∈ 𝑃) |
58 | 10 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ 𝑃) |
59 | 8 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌 ∈ 𝑃) |
60 | 18 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑇 ∈ 𝑃) |
61 | 12 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴 ∈ 𝑃) |
62 | 16 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ 𝑃) |
63 | 14 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵 ∈ 𝑃) |
64 | 20 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐷 ∈ 𝑃) |
65 | | simpr 485 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌)) |
66 | 26 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
67 | 1, 2, 3, 25, 56, 57, 59, 58, 61, 63, 62, 66 | cgr3swap23 26885 |
. . . 4
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 〈“𝑋𝑍𝑌”〉 ∼ 〈“𝐴𝐶𝐵”〉) |
68 | 1, 2, 3, 25, 56, 57, 58, 59, 61, 62, 63, 67, 65 | tgbtwnxfr 26891 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
69 | 1, 2, 3, 25, 56, 57, 59, 58, 61, 63, 62, 66 | cgr3simp1 26881 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → (𝑋 − 𝑌) = (𝐴 − 𝐵)) |
70 | 1, 2, 3, 25, 56, 57, 58, 59, 61, 62, 63, 67 | cgr3simp2 26882 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → (𝑍 − 𝑌) = (𝐶 − 𝐵)) |
71 | 31 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → (𝑋 − 𝑇) = (𝐴 − 𝐷)) |
72 | 33 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → (𝑌 − 𝑇) = (𝐵 − 𝐷)) |
73 | 1, 2, 3, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72 | tgifscgr 26869 |
. 2
⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → (𝑍 − 𝑇) = (𝐶 − 𝐷)) |
74 | | tgfscgr.1 |
. . 3
⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
75 | | tglngval.l |
. . . 4
⊢ 𝐿 = (LineG‘𝐺) |
76 | 1, 75, 3, 4, 6, 10,
8 | tgcolg 26915 |
. . 3
⊢ (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))) |
77 | 74, 76 | mpbid 231 |
. 2
⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))) |
78 | 35, 55, 73, 77 | mpjao3dan 1430 |
1
⊢ (𝜑 → (𝑍 − 𝑇) = (𝐶 − 𝐷)) |