MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgfscgr Structured version   Visualization version   GIF version

Theorem tgfscgr 28549
Description: Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.d = (dist‘𝐺)
tgfscgr.t (𝜑𝑇𝑃)
tgfscgr.c (𝜑𝐶𝑃)
tgfscgr.d (𝜑𝐷𝑃)
tgfscgr.1 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
tgfscgr.2 (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
tgfscgr.3 (𝜑 → (𝑋 𝑇) = (𝐴 𝐷))
tgfscgr.4 (𝜑 → (𝑌 𝑇) = (𝐵 𝐷))
tgfscgr.5 (𝜑𝑋𝑌)
Assertion
Ref Expression
tgfscgr (𝜑 → (𝑍 𝑇) = (𝐶 𝐷))

Proof of Theorem tgfscgr
StepHypRef Expression
1 tglngval.p . . 3 𝑃 = (Base‘𝐺)
2 lnxfr.d . . 3 = (dist‘𝐺)
3 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
4 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG)
6 tglngval.x . . . 4 (𝜑𝑋𝑃)
76adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋𝑃)
8 tglngval.y . . . 4 (𝜑𝑌𝑃)
98adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌𝑃)
10 tgcolg.z . . . 4 (𝜑𝑍𝑃)
1110adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍𝑃)
12 lnxfr.a . . . 4 (𝜑𝐴𝑃)
1312adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐴𝑃)
14 lnxfr.b . . . 4 (𝜑𝐵𝑃)
1514adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵𝑃)
16 tgfscgr.c . . . 4 (𝜑𝐶𝑃)
1716adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐶𝑃)
18 tgfscgr.t . . . 4 (𝜑𝑇𝑃)
1918adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑇𝑃)
20 tgfscgr.d . . . 4 (𝜑𝐷𝑃)
2120adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐷𝑃)
22 tgfscgr.5 . . . 4 (𝜑𝑋𝑌)
2322adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋𝑌)
24 simpr 484 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍))
25 lnxfr.r . . . 4 = (cgrG‘𝐺)
26 tgfscgr.2 . . . . 5 (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
2726adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
281, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27, 24tgbtwnxfr 28511 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ (𝐴𝐼𝐶))
291, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27cgr3simp1 28501 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝑋 𝑌) = (𝐴 𝐵))
301, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27cgr3simp2 28502 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝑌 𝑍) = (𝐵 𝐶))
31 tgfscgr.3 . . . 4 (𝜑 → (𝑋 𝑇) = (𝐴 𝐷))
3231adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝑋 𝑇) = (𝐴 𝐷))
33 tgfscgr.4 . . . 4 (𝜑 → (𝑌 𝑇) = (𝐵 𝐷))
3433adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝑌 𝑇) = (𝐵 𝐷))
351, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 24, 28, 29, 30, 32, 34axtg5seg 28446 . 2 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝑍 𝑇) = (𝐶 𝐷))
364adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐺 ∈ TarskiG)
378adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑌𝑃)
386adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋𝑃)
3910adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑍𝑃)
4014adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐵𝑃)
4112adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴𝑃)
4216adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐶𝑃)
4318adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑇𝑃)
4420adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐷𝑃)
4522necomd 2980 . . . 4 (𝜑𝑌𝑋)
4645adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑌𝑋)
47 simpr 484 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ (𝑌𝐼𝑍))
4826adantr 480 . . . . 5 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
491, 2, 3, 25, 36, 38, 37, 39, 41, 40, 42, 48cgr3swap12 28504 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ⟨“𝑌𝑋𝑍”⟩ ⟨“𝐵𝐴𝐶”⟩)
501, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49, 47tgbtwnxfr 28511 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ (𝐵𝐼𝐶))
511, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49cgr3simp1 28501 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝑌 𝑋) = (𝐵 𝐴))
521, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49cgr3simp2 28502 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝑋 𝑍) = (𝐴 𝐶))
5333adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝑌 𝑇) = (𝐵 𝐷))
5431adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝑋 𝑇) = (𝐴 𝐷))
551, 2, 3, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50, 51, 52, 53, 54axtg5seg 28446 . 2 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝑍 𝑇) = (𝐶 𝐷))
564adantr 480 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG)
576adantr 480 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋𝑃)
5810adantr 480 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍𝑃)
598adantr 480 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌𝑃)
6018adantr 480 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑇𝑃)
6112adantr 480 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴𝑃)
6216adantr 480 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶𝑃)
6314adantr 480 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵𝑃)
6420adantr 480 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐷𝑃)
65 simpr 484 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌))
6626adantr 480 . . . . 5 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
671, 2, 3, 25, 56, 57, 59, 58, 61, 63, 62, 66cgr3swap23 28505 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝐶𝐵”⟩)
681, 2, 3, 25, 56, 57, 58, 59, 61, 62, 63, 67, 65tgbtwnxfr 28511 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ (𝐴𝐼𝐵))
691, 2, 3, 25, 56, 57, 59, 58, 61, 63, 62, 66cgr3simp1 28501 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑋 𝑌) = (𝐴 𝐵))
701, 2, 3, 25, 56, 57, 58, 59, 61, 62, 63, 67cgr3simp2 28502 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑍 𝑌) = (𝐶 𝐵))
7131adantr 480 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑋 𝑇) = (𝐴 𝐷))
7233adantr 480 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑌 𝑇) = (𝐵 𝐷))
731, 2, 3, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72tgifscgr 28489 . 2 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑍 𝑇) = (𝐶 𝐷))
74 tgfscgr.1 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
75 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
761, 75, 3, 4, 6, 10, 8tgcolg 28535 . . 3 (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
7774, 76mpbid 232 . 2 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
7835, 55, 73, 77mpjao3dan 1434 1 (𝜑 → (𝑍 𝑇) = (𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  ⟨“cs3 14785  Basecbs 17156  distcds 17206  TarskiGcstrkg 28408  Itvcitv 28414  LineGclng 28415  cgrGccgrg 28491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9832  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-xnn0 12494  df-z 12508  df-uz 12772  df-fz 13447  df-fzo 13594  df-hash 14274  df-word 14457  df-concat 14514  df-s1 14539  df-s2 14791  df-s3 14792  df-trkgc 28429  df-trkgb 28430  df-trkgcb 28431  df-trkg 28434  df-cgrg 28492
This theorem is referenced by:  lncgr  28550  mirtrcgr  28664  symquadlem  28670  cgracgr  28799  cgraswap  28801  cgrg3col4  28834
  Copyright terms: Public domain W3C validator