MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcnlem3 Structured version   Visualization version   GIF version

Theorem logcnlem3 24681
Description: Lemma for logcn 24684. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypotheses
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
logcnlem.s 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
logcnlem.t 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
logcnlem.a (𝜑𝐴𝐷)
logcnlem.r (𝜑𝑅 ∈ ℝ+)
logcnlem.b (𝜑𝐵𝐷)
logcnlem.l (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
Assertion
Ref Expression
logcnlem3 (𝜑 → (-π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧ ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π))

Proof of Theorem logcnlem3
StepHypRef Expression
1 pire 24502 . . . . . 6 π ∈ ℝ
21renegcli 10596 . . . . 5 -π ∈ ℝ
32a1i 11 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π ∈ ℝ)
4 logcnlem.b . . . . . . . 8 (𝜑𝐵𝐷)
5 logcn.d . . . . . . . . . 10 𝐷 = (ℂ ∖ (-∞(,]0))
65ellogdm 24676 . . . . . . . . 9 (𝐵𝐷 ↔ (𝐵 ∈ ℂ ∧ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ+)))
76simplbi 491 . . . . . . . 8 (𝐵𝐷𝐵 ∈ ℂ)
84, 7syl 17 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
95logdmn0 24677 . . . . . . . 8 (𝐵𝐷𝐵 ≠ 0)
104, 9syl 17 . . . . . . 7 (𝜑𝐵 ≠ 0)
118, 10logcld 24608 . . . . . 6 (𝜑 → (log‘𝐵) ∈ ℂ)
1211imcld 14220 . . . . 5 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℝ)
1312adantr 472 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐵)) ∈ ℝ)
14 logcnlem.a . . . . . . . . 9 (𝜑𝐴𝐷)
155ellogdm 24676 . . . . . . . . . 10 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
1615simplbi 491 . . . . . . . . 9 (𝐴𝐷𝐴 ∈ ℂ)
1714, 16syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
185logdmn0 24677 . . . . . . . . 9 (𝐴𝐷𝐴 ≠ 0)
1914, 18syl 17 . . . . . . . 8 (𝜑𝐴 ≠ 0)
2017, 19logcld 24608 . . . . . . 7 (𝜑 → (log‘𝐴) ∈ ℂ)
2120imcld 14220 . . . . . 6 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
2212, 21resubcld 10712 . . . . 5 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∈ ℝ)
2322adantr 472 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∈ ℝ)
248, 10logimcld 24609 . . . . . 6 (𝜑 → (-π < (ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) ≤ π))
2524simpld 488 . . . . 5 (𝜑 → -π < (ℑ‘(log‘𝐵)))
2625adantr 472 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π < (ℑ‘(log‘𝐵)))
2712recnd 10322 . . . . . . 7 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℂ)
2827adantr 472 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐵)) ∈ ℂ)
2928subid1d 10635 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − 0) = (ℑ‘(log‘𝐵)))
3021adantr 472 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
31 0red 10297 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → 0 ∈ ℝ)
32 argimlt0 24650 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ (-π(,)0))
3317, 32sylan 575 . . . . . . . 8 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ (-π(,)0))
34 eliooord 12435 . . . . . . . 8 ((ℑ‘(log‘𝐴)) ∈ (-π(,)0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < 0))
3533, 34syl 17 . . . . . . 7 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < 0))
3635simprd 489 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) < 0)
3730, 31, 13, 36ltsub2dd 10894 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − 0) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
3829, 37eqbrtrrd 4833 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐵)) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
393, 13, 23, 26, 38lttrd 10452 . . 3 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
4025adantr 472 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) = 0) → -π < (ℑ‘(log‘𝐵)))
41 reim0b 14144 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
4217, 41syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
4315simprbi 490 . . . . . . . . . . 11 (𝐴𝐷 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
4414, 43syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
4542, 44sylbird 251 . . . . . . . . 9 (𝜑 → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ+))
4645imp 395 . . . . . . . 8 ((𝜑 ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈ ℝ+)
4746relogcld 24660 . . . . . . 7 ((𝜑 ∧ (ℑ‘𝐴) = 0) → (log‘𝐴) ∈ ℝ)
4847reim0d 14250 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) = 0) → (ℑ‘(log‘𝐴)) = 0)
4948oveq2d 6858 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) = 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐵)) − 0))
5027subid1d 10635 . . . . . 6 (𝜑 → ((ℑ‘(log‘𝐵)) − 0) = (ℑ‘(log‘𝐵)))
5150adantr 472 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) = 0) → ((ℑ‘(log‘𝐵)) − 0) = (ℑ‘(log‘𝐵)))
5249, 51eqtrd 2799 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) = 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐵)))
5340, 52breqtrrd 4837 . . 3 ((𝜑 ∧ (ℑ‘𝐴) = 0) → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
542a1i 11 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -π ∈ ℝ)
5521renegcld 10711 . . . . 5 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℝ)
5655adantr 472 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -(ℑ‘(log‘𝐴)) ∈ ℝ)
5722adantr 472 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∈ ℝ)
58 argimgt0 24649 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
5917, 58sylan 575 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
60 eliooord 12435 . . . . . . 7 ((ℑ‘(log‘𝐴)) ∈ (0(,)π) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
6159, 60syl 17 . . . . . 6 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
6261simprd 489 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) < π)
63 ltneg 10782 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
6421, 1, 63sylancl 580 . . . . . 6 (𝜑 → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
6564adantr 472 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
6662, 65mpbid 223 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -π < -(ℑ‘(log‘𝐴)))
67 df-neg 10523 . . . . 5 -(ℑ‘(log‘𝐴)) = (0 − (ℑ‘(log‘𝐴)))
688adantr 472 . . . . . . . . 9 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝐵 ∈ ℂ)
6917, 8imsubd 14242 . . . . . . . . . . . . 13 (𝜑 → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
7069adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
7117, 8subcld 10646 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐵) ∈ ℂ)
7271imcld 14220 . . . . . . . . . . . . . 14 (𝜑 → (ℑ‘(𝐴𝐵)) ∈ ℝ)
7372adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴𝐵)) ∈ ℝ)
7471abscld 14460 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
7574adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (abs‘(𝐴𝐵)) ∈ ℝ)
7617adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
7776imcld 14220 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ∈ ℝ)
78 absimle 14334 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵) ∈ ℂ → (abs‘(ℑ‘(𝐴𝐵))) ≤ (abs‘(𝐴𝐵)))
7971, 78syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(ℑ‘(𝐴𝐵))) ≤ (abs‘(𝐴𝐵)))
8072, 74absled 14454 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘(ℑ‘(𝐴𝐵))) ≤ (abs‘(𝐴𝐵)) ↔ (-(abs‘(𝐴𝐵)) ≤ (ℑ‘(𝐴𝐵)) ∧ (ℑ‘(𝐴𝐵)) ≤ (abs‘(𝐴𝐵)))))
8179, 80mpbid 223 . . . . . . . . . . . . . . 15 (𝜑 → (-(abs‘(𝐴𝐵)) ≤ (ℑ‘(𝐴𝐵)) ∧ (ℑ‘(𝐴𝐵)) ≤ (abs‘(𝐴𝐵))))
8281simprd 489 . . . . . . . . . . . . . 14 (𝜑 → (ℑ‘(𝐴𝐵)) ≤ (abs‘(𝐴𝐵)))
8382adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴𝐵)) ≤ (abs‘(𝐴𝐵)))
84 logcnlem.s . . . . . . . . . . . . . . . . . 18 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
85 rpre 12036 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
8685adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
8717imcld 14220 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
8887recnd 10322 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
8988abscld 14460 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ)
9089adantr 472 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
9186, 90ifclda 4277 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ)
9284, 91syl5eqel 2848 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ ℝ)
93 logcnlem.t . . . . . . . . . . . . . . . . . 18 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
9417abscld 14460 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐴) ∈ ℝ)
95 logcnlem.r . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ ℝ+)
9695rpred 12070 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ ℝ)
97 1rp 12032 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ+
98 rpaddcl 12052 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+)
9997, 95, 98sylancr 581 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℝ+)
10096, 99rerpdivcld 12101 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ)
10194, 100remulcld 10324 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ)
10293, 101syl5eqel 2848 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ ℝ)
10392, 102ifcld 4288 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑆𝑇, 𝑆, 𝑇) ∈ ℝ)
104 logcnlem.l . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
105 min1 12222 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) → if(𝑆𝑇, 𝑆, 𝑇) ≤ 𝑆)
10692, 102, 105syl2anc 579 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑆𝑇, 𝑆, 𝑇) ≤ 𝑆)
10774, 103, 92, 104, 106ltletrd 10451 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝐴𝐵)) < 𝑆)
108107adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (abs‘(𝐴𝐵)) < 𝑆)
109 gt0ne0 10747 . . . . . . . . . . . . . . . . 17 (((ℑ‘𝐴) ∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
11087, 109sylan 575 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
11185, 42syl5ib 235 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 ∈ ℝ+ → (ℑ‘𝐴) = 0))
112111necon3ad 2950 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((ℑ‘𝐴) ≠ 0 → ¬ 𝐴 ∈ ℝ+))
113112imp 395 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (ℑ‘𝐴) ≠ 0) → ¬ 𝐴 ∈ ℝ+)
114 iffalse 4252 . . . . . . . . . . . . . . . . . 18 𝐴 ∈ ℝ+ → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) = (abs‘(ℑ‘𝐴)))
11584, 114syl5eq 2811 . . . . . . . . . . . . . . . . 17 𝐴 ∈ ℝ+𝑆 = (abs‘(ℑ‘𝐴)))
116113, 115syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (ℑ‘𝐴) ≠ 0) → 𝑆 = (abs‘(ℑ‘𝐴)))
117110, 116syldan 585 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝑆 = (abs‘(ℑ‘𝐴)))
118 0re 10295 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
119 ltle 10380 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (0 < (ℑ‘𝐴) → 0 ≤ (ℑ‘𝐴)))
120118, 87, 119sylancr 581 . . . . . . . . . . . . . . . . 17 (𝜑 → (0 < (ℑ‘𝐴) → 0 ≤ (ℑ‘𝐴)))
121120imp 395 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 ≤ (ℑ‘𝐴))
12277, 121absidd 14446 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (abs‘(ℑ‘𝐴)) = (ℑ‘𝐴))
123117, 122eqtrd 2799 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝑆 = (ℑ‘𝐴))
124108, 123breqtrd 4835 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (abs‘(𝐴𝐵)) < (ℑ‘𝐴))
12573, 75, 77, 83, 124lelttrd 10449 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴𝐵)) < (ℑ‘𝐴))
12670, 125eqbrtrrd 4833 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) − (ℑ‘𝐵)) < (ℑ‘𝐴))
12788adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ∈ ℂ)
128127subid1d 10635 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
129126, 128breqtrrd 4837 . . . . . . . . . 10 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) − (ℑ‘𝐵)) < ((ℑ‘𝐴) − 0))
130 0red 10297 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
1318imcld 14220 . . . . . . . . . . . 12 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
132130, 131, 87ltsub2d 10891 . . . . . . . . . . 11 (𝜑 → (0 < (ℑ‘𝐵) ↔ ((ℑ‘𝐴) − (ℑ‘𝐵)) < ((ℑ‘𝐴) − 0)))
133132adantr 472 . . . . . . . . . 10 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘𝐵) ↔ ((ℑ‘𝐴) − (ℑ‘𝐵)) < ((ℑ‘𝐴) − 0)))
134129, 133mpbird 248 . . . . . . . . 9 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘𝐵))
135 argimgt0 24649 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 0 < (ℑ‘𝐵)) → (ℑ‘(log‘𝐵)) ∈ (0(,)π))
13668, 134, 135syl2anc 579 . . . . . . . 8 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐵)) ∈ (0(,)π))
137 eliooord 12435 . . . . . . . 8 ((ℑ‘(log‘𝐵)) ∈ (0(,)π) → (0 < (ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < π))
138136, 137syl 17 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < π))
139138simpld 488 . . . . . 6 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐵)))
140130, 12, 21ltsub1d 10890 . . . . . . 7 (𝜑 → (0 < (ℑ‘(log‘𝐵)) ↔ (0 − (ℑ‘(log‘𝐴))) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))))
141140adantr 472 . . . . . 6 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐵)) ↔ (0 − (ℑ‘(log‘𝐴))) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))))
142139, 141mpbid 223 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 − (ℑ‘(log‘𝐴))) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
14367, 142syl5eqbr 4844 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -(ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
14454, 56, 57, 66, 143lttrd 10452 . . 3 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
145 lttri4 10376 . . . 4 (((ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℑ‘𝐴) < 0 ∨ (ℑ‘𝐴) = 0 ∨ 0 < (ℑ‘𝐴)))
14687, 118, 145sylancl 580 . . 3 (𝜑 → ((ℑ‘𝐴) < 0 ∨ (ℑ‘𝐴) = 0 ∨ 0 < (ℑ‘𝐴)))
14739, 53, 144, 146mpjao3dan 1556 . 2 (𝜑 → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
1481a1i 11 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → π ∈ ℝ)
14930renegcld 10711 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -(ℑ‘(log‘𝐴)) ∈ ℝ)
1508adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (ℑ‘𝐴) < 0) → 𝐵 ∈ ℂ)
15188adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) ∈ ℂ)
152151subid1d 10635 . . . . . . . . . . . 12 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
15387adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) ∈ ℝ)
15474renegcld 10711 . . . . . . . . . . . . . . 15 (𝜑 → -(abs‘(𝐴𝐵)) ∈ ℝ)
155154adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -(abs‘(𝐴𝐵)) ∈ ℝ)
15672adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(𝐴𝐵)) ∈ ℝ)
15774adantr 472 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (abs‘(𝐴𝐵)) ∈ ℝ)
158107adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (abs‘(𝐴𝐵)) < 𝑆)
159118ltnri 10400 . . . . . . . . . . . . . . . . . . . 20 ¬ 0 < 0
160 breq1 4812 . . . . . . . . . . . . . . . . . . . 20 ((ℑ‘𝐴) = 0 → ((ℑ‘𝐴) < 0 ↔ 0 < 0))
161159, 160mtbiri 318 . . . . . . . . . . . . . . . . . . 19 ((ℑ‘𝐴) = 0 → ¬ (ℑ‘𝐴) < 0)
162161necon2ai 2966 . . . . . . . . . . . . . . . . . 18 ((ℑ‘𝐴) < 0 → (ℑ‘𝐴) ≠ 0)
163162, 116sylan2 586 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (ℑ‘𝐴) < 0) → 𝑆 = (abs‘(ℑ‘𝐴)))
164 ltle 10380 . . . . . . . . . . . . . . . . . . . 20 (((ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℑ‘𝐴) < 0 → (ℑ‘𝐴) ≤ 0))
16587, 118, 164sylancl 580 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((ℑ‘𝐴) < 0 → (ℑ‘𝐴) ≤ 0))
166165imp 395 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) ≤ 0)
167153, 166absnidd 14437 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (abs‘(ℑ‘𝐴)) = -(ℑ‘𝐴))
168163, 167eqtrd 2799 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (ℑ‘𝐴) < 0) → 𝑆 = -(ℑ‘𝐴))
169158, 168breqtrd 4835 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (abs‘(𝐴𝐵)) < -(ℑ‘𝐴))
170157, 153, 169ltnegcon2d 10862 . . . . . . . . . . . . . 14 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) < -(abs‘(𝐴𝐵)))
17181simpld 488 . . . . . . . . . . . . . . 15 (𝜑 → -(abs‘(𝐴𝐵)) ≤ (ℑ‘(𝐴𝐵)))
172171adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -(abs‘(𝐴𝐵)) ≤ (ℑ‘(𝐴𝐵)))
173153, 155, 156, 170, 172ltletrd 10451 . . . . . . . . . . . . 13 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) < (ℑ‘(𝐴𝐵)))
17469adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
175173, 174breqtrd 4835 . . . . . . . . . . . 12 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) < ((ℑ‘𝐴) − (ℑ‘𝐵)))
176152, 175eqbrtrd 4831 . . . . . . . . . . 11 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘𝐴) − 0) < ((ℑ‘𝐴) − (ℑ‘𝐵)))
177150imcld 14220 . . . . . . . . . . . 12 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐵) ∈ ℝ)
178177, 31, 153ltsub2d 10891 . . . . . . . . . . 11 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘𝐵) < 0 ↔ ((ℑ‘𝐴) − 0) < ((ℑ‘𝐴) − (ℑ‘𝐵))))
179176, 178mpbird 248 . . . . . . . . . 10 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐵) < 0)
180 argimlt0 24650 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ (ℑ‘𝐵) < 0) → (ℑ‘(log‘𝐵)) ∈ (-π(,)0))
181150, 179, 180syl2anc 579 . . . . . . . . 9 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐵)) ∈ (-π(,)0))
182 eliooord 12435 . . . . . . . . 9 ((ℑ‘(log‘𝐵)) ∈ (-π(,)0) → (-π < (ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < 0))
183181, 182syl 17 . . . . . . . 8 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (-π < (ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < 0))
184183simprd 489 . . . . . . 7 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐵)) < 0)
18513, 31, 30, 184ltsub1dd 10893 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < (0 − (ℑ‘(log‘𝐴))))
186185, 67syl6breqr 4851 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < -(ℑ‘(log‘𝐴)))
18735simpld 488 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π < (ℑ‘(log‘𝐴)))
188 ltnegcon1 10783 . . . . . . 7 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) < π))
1891, 30, 188sylancr 581 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (-π < (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) < π))
190187, 189mpbid 223 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -(ℑ‘(log‘𝐴)) < π)
19123, 149, 148, 186, 190lttrd 10452 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < π)
19223, 148, 191ltled 10439 . . 3 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
19324simprd 489 . . . . 5 (𝜑 → (ℑ‘(log‘𝐵)) ≤ π)
194193adantr 472 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) = 0) → (ℑ‘(log‘𝐵)) ≤ π)
19552, 194eqbrtrd 4831 . . 3 ((𝜑 ∧ (ℑ‘𝐴) = 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
1961a1i 11 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → π ∈ ℝ)
19712adantr 472 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐵)) ∈ ℝ)
198 0red 10297 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 ∈ ℝ)
19921adantr 472 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
20061simpld 488 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐴)))
201198, 199, 197, 200ltsub2dd 10894 . . . . . 6 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < ((ℑ‘(log‘𝐵)) − 0))
20227adantr 472 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐵)) ∈ ℂ)
203202subid1d 10635 . . . . . 6 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − 0) = (ℑ‘(log‘𝐵)))
204201, 203breqtrd 4835 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < (ℑ‘(log‘𝐵)))
205138simprd 489 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐵)) < π)
20657, 197, 196, 204, 205lttrd 10452 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < π)
20757, 196, 206ltled 10439 . . 3 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
208192, 195, 207, 146mpjao3dan 1556 . 2 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
209147, 208jca 507 1 (𝜑 → (-π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧ ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3o 1106   = wceq 1652  wcel 2155  wne 2937  cdif 3729  ifcif 4243   class class class wbr 4809  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  -∞cmnf 10326   < clt 10328  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  +crp 12028  (,)cioo 12377  (,]cioc 12378  cim 14123  abscabs 14259  πcpi 15079  logclog 24592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14092  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-limsup 14487  df-clim 14504  df-rlim 14505  df-sum 14702  df-ef 15080  df-sin 15082  df-cos 15083  df-pi 15085  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-log 24594
This theorem is referenced by:  logcnlem4  24682
  Copyright terms: Public domain W3C validator