Proof of Theorem logcnlem3
Step | Hyp | Ref
| Expression |
1 | | pire 25615 |
. . . . . 6
⊢ π
∈ ℝ |
2 | 1 | renegcli 11282 |
. . . . 5
⊢ -π
∈ ℝ |
3 | 2 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π ∈
ℝ) |
4 | | logcnlem.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝐷) |
5 | | logcn.d |
. . . . . . . . . 10
⊢ 𝐷 = (ℂ ∖
(-∞(,]0)) |
6 | 5 | ellogdm 25794 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝐷 ↔ (𝐵 ∈ ℂ ∧ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ+))) |
7 | 6 | simplbi 498 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ ℂ) |
8 | 4, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
9 | 5 | logdmn0 25795 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝐷 → 𝐵 ≠ 0) |
10 | 4, 9 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ≠ 0) |
11 | 8, 10 | logcld 25726 |
. . . . . 6
⊢ (𝜑 → (log‘𝐵) ∈
ℂ) |
12 | 11 | imcld 14906 |
. . . . 5
⊢ (𝜑 →
(ℑ‘(log‘𝐵)) ∈ ℝ) |
13 | 12 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘(log‘𝐵)) ∈ ℝ) |
14 | | logcnlem.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝐷) |
15 | 5 | ellogdm 25794 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ+))) |
16 | 15 | simplbi 498 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ) |
17 | 14, 16 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
18 | 5 | logdmn0 25795 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
19 | 14, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ≠ 0) |
20 | 17, 19 | logcld 25726 |
. . . . . . 7
⊢ (𝜑 → (log‘𝐴) ∈
ℂ) |
21 | 20 | imcld 14906 |
. . . . . 6
⊢ (𝜑 →
(ℑ‘(log‘𝐴)) ∈ ℝ) |
22 | 12, 21 | resubcld 11403 |
. . . . 5
⊢ (𝜑 →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∈
ℝ) |
23 | 22 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∈
ℝ) |
24 | 8, 10 | logimcld 25727 |
. . . . . 6
⊢ (𝜑 → (-π <
(ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) ≤ π)) |
25 | 24 | simpld 495 |
. . . . 5
⊢ (𝜑 → -π <
(ℑ‘(log‘𝐵))) |
26 | 25 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π <
(ℑ‘(log‘𝐵))) |
27 | 12 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 →
(ℑ‘(log‘𝐵)) ∈ ℂ) |
28 | 27 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘(log‘𝐵)) ∈ ℂ) |
29 | 28 | subid1d 11321 |
. . . . 5
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
((ℑ‘(log‘𝐵)) − 0) =
(ℑ‘(log‘𝐵))) |
30 | 21 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘(log‘𝐴)) ∈ ℝ) |
31 | | 0red 10978 |
. . . . . 6
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → 0 ∈
ℝ) |
32 | | argimlt0 25768 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) < 0)
→ (ℑ‘(log‘𝐴)) ∈ (-π(,)0)) |
33 | 17, 32 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘(log‘𝐴)) ∈ (-π(,)0)) |
34 | | eliooord 13138 |
. . . . . . . 8
⊢
((ℑ‘(log‘𝐴)) ∈ (-π(,)0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < 0)) |
35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < 0)) |
36 | 35 | simprd 496 |
. . . . . 6
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘(log‘𝐴)) < 0) |
37 | 30, 31, 13, 36 | ltsub2dd 11588 |
. . . . 5
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
((ℑ‘(log‘𝐵)) − 0) <
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))) |
38 | 29, 37 | eqbrtrrd 5098 |
. . . 4
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘(log‘𝐵)) < ((ℑ‘(log‘𝐵)) −
(ℑ‘(log‘𝐴)))) |
39 | 3, 13, 23, 26, 38 | lttrd 11136 |
. . 3
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π <
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))) |
40 | 25 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) → -π <
(ℑ‘(log‘𝐵))) |
41 | | reim0b 14830 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔
(ℑ‘𝐴) =
0)) |
42 | 17, 41 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
43 | 15 | simprbi 497 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝐷 → (𝐴 ∈ ℝ → 𝐴 ∈
ℝ+)) |
44 | 14, 43 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ ℝ → 𝐴 ∈
ℝ+)) |
45 | 42, 44 | sylbird 259 |
. . . . . . . . 9
⊢ (𝜑 → ((ℑ‘𝐴) = 0 → 𝐴 ∈
ℝ+)) |
46 | 45 | imp 407 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈
ℝ+) |
47 | 46 | relogcld 25778 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) → (log‘𝐴) ∈
ℝ) |
48 | 47 | reim0d 14936 |
. . . . . 6
⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) →
(ℑ‘(log‘𝐴)) = 0) |
49 | 48 | oveq2d 7291 |
. . . . 5
⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) =
((ℑ‘(log‘𝐵)) − 0)) |
50 | 27 | subid1d 11321 |
. . . . . 6
⊢ (𝜑 →
((ℑ‘(log‘𝐵)) − 0) =
(ℑ‘(log‘𝐵))) |
51 | 50 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) →
((ℑ‘(log‘𝐵)) − 0) =
(ℑ‘(log‘𝐵))) |
52 | 49, 51 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) =
(ℑ‘(log‘𝐵))) |
53 | 40, 52 | breqtrrd 5102 |
. . 3
⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) → -π <
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))) |
54 | 2 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -π ∈
ℝ) |
55 | 21 | renegcld 11402 |
. . . . 5
⊢ (𝜑 →
-(ℑ‘(log‘𝐴)) ∈ ℝ) |
56 | 55 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
-(ℑ‘(log‘𝐴)) ∈ ℝ) |
57 | 22 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∈
ℝ) |
58 | | argimgt0 25767 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ (0(,)π)) |
59 | 17, 58 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ (0(,)π)) |
60 | | eliooord 13138 |
. . . . . . 7
⊢
((ℑ‘(log‘𝐴)) ∈ (0(,)π) → (0 <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)) |
61 | 59, 60 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)) |
62 | 61 | simprd 496 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) < π) |
63 | | ltneg 11475 |
. . . . . . 7
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ ((ℑ‘(log‘𝐴)) < π ↔ -π <
-(ℑ‘(log‘𝐴)))) |
64 | 21, 1, 63 | sylancl 586 |
. . . . . 6
⊢ (𝜑 →
((ℑ‘(log‘𝐴)) < π ↔ -π <
-(ℑ‘(log‘𝐴)))) |
65 | 64 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) < π ↔ -π <
-(ℑ‘(log‘𝐴)))) |
66 | 62, 65 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -π <
-(ℑ‘(log‘𝐴))) |
67 | | df-neg 11208 |
. . . . 5
⊢
-(ℑ‘(log‘𝐴)) = (0 −
(ℑ‘(log‘𝐴))) |
68 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝐵 ∈ ℂ) |
69 | 17, 8 | imsubd 14928 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) |
70 | 69 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) |
71 | 17, 8 | subcld 11332 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
72 | 71 | imcld 14906 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) ∈ ℝ) |
73 | 72 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴 − 𝐵)) ∈ ℝ) |
74 | 71 | abscld 15148 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
75 | 74 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
76 | 17 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝐴 ∈ ℂ) |
77 | 76 | imcld 14906 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ∈
ℝ) |
78 | | absimle 15021 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 − 𝐵) ∈ ℂ →
(abs‘(ℑ‘(𝐴 − 𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
79 | 71, 78 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(abs‘(ℑ‘(𝐴 − 𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
80 | 72, 74 | absled 15142 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
((abs‘(ℑ‘(𝐴 − 𝐵))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (-(abs‘(𝐴 − 𝐵)) ≤ (ℑ‘(𝐴 − 𝐵)) ∧ (ℑ‘(𝐴 − 𝐵)) ≤ (abs‘(𝐴 − 𝐵))))) |
81 | 79, 80 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (-(abs‘(𝐴 − 𝐵)) ≤ (ℑ‘(𝐴 − 𝐵)) ∧ (ℑ‘(𝐴 − 𝐵)) ≤ (abs‘(𝐴 − 𝐵)))) |
82 | 81 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
83 | 82 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴 − 𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
84 | | logcnlem.s |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑆 = if(𝐴 ∈ ℝ+, 𝐴,
(abs‘(ℑ‘𝐴))) |
85 | | rpre 12738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ) |
86 | 85 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈
ℝ) |
87 | 17 | imcld 14906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (ℑ‘𝐴) ∈
ℝ) |
88 | 87 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (ℑ‘𝐴) ∈
ℂ) |
89 | 88 | abscld 15148 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 →
(abs‘(ℑ‘𝐴)) ∈ ℝ) |
90 | 89 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) →
(abs‘(ℑ‘𝐴)) ∈ ℝ) |
91 | 86, 90 | ifclda 4494 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → if(𝐴 ∈ ℝ+, 𝐴,
(abs‘(ℑ‘𝐴))) ∈ ℝ) |
92 | 84, 91 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 ∈ ℝ) |
93 | | logcnlem.t |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) |
94 | 17 | abscld 15148 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (abs‘𝐴) ∈
ℝ) |
95 | | logcnlem.r |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
96 | 95 | rpred 12772 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑅 ∈ ℝ) |
97 | | 1rp 12734 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℝ+ |
98 | | rpaddcl 12752 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
∈ ℝ+ ∧ 𝑅 ∈ ℝ+) → (1 +
𝑅) ∈
ℝ+) |
99 | 97, 95, 98 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1 + 𝑅) ∈
ℝ+) |
100 | 96, 99 | rerpdivcld 12803 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ) |
101 | 94, 100 | remulcld 11005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ) |
102 | 93, 101 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 ∈ ℝ) |
103 | 92, 102 | ifcld 4505 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑆 ≤ 𝑇, 𝑆, 𝑇) ∈ ℝ) |
104 | | logcnlem.l |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) < if(𝑆 ≤ 𝑇, 𝑆, 𝑇)) |
105 | | min1 12923 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) → if(𝑆 ≤ 𝑇, 𝑆, 𝑇) ≤ 𝑆) |
106 | 92, 102, 105 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑆 ≤ 𝑇, 𝑆, 𝑇) ≤ 𝑆) |
107 | 74, 103, 92, 104, 106 | ltletrd 11135 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) < 𝑆) |
108 | 107 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (abs‘(𝐴 − 𝐵)) < 𝑆) |
109 | | gt0ne0 11440 |
. . . . . . . . . . . . . . . . 17
⊢
(((ℑ‘𝐴)
∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0) |
110 | 87, 109 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0) |
111 | 85, 42 | syl5ib 243 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐴 ∈ ℝ+ →
(ℑ‘𝐴) =
0)) |
112 | 111 | necon3ad 2956 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((ℑ‘𝐴) ≠ 0 → ¬ 𝐴 ∈
ℝ+)) |
113 | 112 | imp 407 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (ℑ‘𝐴) ≠ 0) → ¬ 𝐴 ∈
ℝ+) |
114 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝐴 ∈
ℝ+ → if(𝐴 ∈ ℝ+, 𝐴,
(abs‘(ℑ‘𝐴))) = (abs‘(ℑ‘𝐴))) |
115 | 84, 114 | eqtrid 2790 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝐴 ∈
ℝ+ → 𝑆 = (abs‘(ℑ‘𝐴))) |
116 | 113, 115 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (ℑ‘𝐴) ≠ 0) → 𝑆 =
(abs‘(ℑ‘𝐴))) |
117 | 110, 116 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝑆 = (abs‘(ℑ‘𝐴))) |
118 | | 0re 10977 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ |
119 | | ltle 11063 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (0 <
(ℑ‘𝐴) → 0
≤ (ℑ‘𝐴))) |
120 | 118, 87, 119 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (0 <
(ℑ‘𝐴) → 0
≤ (ℑ‘𝐴))) |
121 | 120 | imp 407 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 ≤
(ℑ‘𝐴)) |
122 | 77, 121 | absidd 15134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
(abs‘(ℑ‘𝐴)) = (ℑ‘𝐴)) |
123 | 117, 122 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝑆 = (ℑ‘𝐴)) |
124 | 108, 123 | breqtrd 5100 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (abs‘(𝐴 − 𝐵)) < (ℑ‘𝐴)) |
125 | 73, 75, 77, 83, 124 | lelttrd 11133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴 − 𝐵)) < (ℑ‘𝐴)) |
126 | 70, 125 | eqbrtrrd 5098 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) − (ℑ‘𝐵)) < (ℑ‘𝐴)) |
127 | 88 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ∈
ℂ) |
128 | 127 | subid1d 11321 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) − 0) =
(ℑ‘𝐴)) |
129 | 126, 128 | breqtrrd 5102 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) − (ℑ‘𝐵)) < ((ℑ‘𝐴) − 0)) |
130 | | 0red 10978 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈
ℝ) |
131 | 8 | imcld 14906 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℑ‘𝐵) ∈
ℝ) |
132 | 130, 131,
87 | ltsub2d 11585 |
. . . . . . . . . . 11
⊢ (𝜑 → (0 <
(ℑ‘𝐵) ↔
((ℑ‘𝐴) −
(ℑ‘𝐵)) <
((ℑ‘𝐴) −
0))) |
133 | 132 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 <
(ℑ‘𝐵) ↔
((ℑ‘𝐴) −
(ℑ‘𝐵)) <
((ℑ‘𝐴) −
0))) |
134 | 129, 133 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 <
(ℑ‘𝐵)) |
135 | | argimgt0 25767 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℂ ∧ 0 <
(ℑ‘𝐵)) →
(ℑ‘(log‘𝐵)) ∈ (0(,)π)) |
136 | 68, 134, 135 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
(ℑ‘(log‘𝐵)) ∈ (0(,)π)) |
137 | | eliooord 13138 |
. . . . . . . 8
⊢
((ℑ‘(log‘𝐵)) ∈ (0(,)π) → (0 <
(ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < π)) |
138 | 136, 137 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 <
(ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < π)) |
139 | 138 | simpld 495 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 <
(ℑ‘(log‘𝐵))) |
140 | 130, 12, 21 | ltsub1d 11584 |
. . . . . . 7
⊢ (𝜑 → (0 <
(ℑ‘(log‘𝐵)) ↔ (0 −
(ℑ‘(log‘𝐴))) < ((ℑ‘(log‘𝐵)) −
(ℑ‘(log‘𝐴))))) |
141 | 140 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 <
(ℑ‘(log‘𝐵)) ↔ (0 −
(ℑ‘(log‘𝐴))) < ((ℑ‘(log‘𝐵)) −
(ℑ‘(log‘𝐴))))) |
142 | 139, 141 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 −
(ℑ‘(log‘𝐴))) < ((ℑ‘(log‘𝐵)) −
(ℑ‘(log‘𝐴)))) |
143 | 67, 142 | eqbrtrid 5109 |
. . . 4
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
-(ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐵)) −
(ℑ‘(log‘𝐴)))) |
144 | 54, 56, 57, 66, 143 | lttrd 11136 |
. . 3
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -π <
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))) |
145 | | lttri4 11059 |
. . . 4
⊢
(((ℑ‘𝐴)
∈ ℝ ∧ 0 ∈ ℝ) → ((ℑ‘𝐴) < 0 ∨ (ℑ‘𝐴) = 0 ∨ 0 <
(ℑ‘𝐴))) |
146 | 87, 118, 145 | sylancl 586 |
. . 3
⊢ (𝜑 → ((ℑ‘𝐴) < 0 ∨
(ℑ‘𝐴) = 0 ∨
0 < (ℑ‘𝐴))) |
147 | 39, 53, 144, 146 | mpjao3dan 1430 |
. 2
⊢ (𝜑 → -π <
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))) |
148 | 1 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → π ∈
ℝ) |
149 | 30 | renegcld 11402 |
. . . . 5
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
-(ℑ‘(log‘𝐴)) ∈ ℝ) |
150 | 8 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → 𝐵 ∈
ℂ) |
151 | 88 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘𝐴) ∈
ℂ) |
152 | 151 | subid1d 11321 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
((ℑ‘𝐴) −
0) = (ℑ‘𝐴)) |
153 | 87 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘𝐴) ∈
ℝ) |
154 | 74 | renegcld 11402 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → -(abs‘(𝐴 − 𝐵)) ∈ ℝ) |
155 | 154 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
-(abs‘(𝐴 −
𝐵)) ∈
ℝ) |
156 | 72 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘(𝐴 −
𝐵)) ∈
ℝ) |
157 | 74 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(abs‘(𝐴 − 𝐵)) ∈
ℝ) |
158 | 107 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(abs‘(𝐴 − 𝐵)) < 𝑆) |
159 | 118 | ltnri 11084 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ¬ 0
< 0 |
160 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((ℑ‘𝐴) =
0 → ((ℑ‘𝐴)
< 0 ↔ 0 < 0)) |
161 | 159, 160 | mtbiri 327 |
. . . . . . . . . . . . . . . . . . 19
⊢
((ℑ‘𝐴) =
0 → ¬ (ℑ‘𝐴) < 0) |
162 | 161 | necon2ai 2973 |
. . . . . . . . . . . . . . . . . 18
⊢
((ℑ‘𝐴)
< 0 → (ℑ‘𝐴) ≠ 0) |
163 | 162, 116 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → 𝑆 =
(abs‘(ℑ‘𝐴))) |
164 | | ltle 11063 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((ℑ‘𝐴)
∈ ℝ ∧ 0 ∈ ℝ) → ((ℑ‘𝐴) < 0 → (ℑ‘𝐴) ≤ 0)) |
165 | 87, 118, 164 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((ℑ‘𝐴) < 0 →
(ℑ‘𝐴) ≤
0)) |
166 | 165 | imp 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘𝐴) ≤
0) |
167 | 153, 166 | absnidd 15125 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(abs‘(ℑ‘𝐴)) = -(ℑ‘𝐴)) |
168 | 163, 167 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → 𝑆 = -(ℑ‘𝐴)) |
169 | 158, 168 | breqtrd 5100 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(abs‘(𝐴 − 𝐵)) < -(ℑ‘𝐴)) |
170 | 157, 153,
169 | ltnegcon2d 11556 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘𝐴) <
-(abs‘(𝐴 −
𝐵))) |
171 | 81 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → -(abs‘(𝐴 − 𝐵)) ≤ (ℑ‘(𝐴 − 𝐵))) |
172 | 171 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
-(abs‘(𝐴 −
𝐵)) ≤
(ℑ‘(𝐴 −
𝐵))) |
173 | 153, 155,
156, 170, 172 | ltletrd 11135 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘𝐴) <
(ℑ‘(𝐴 −
𝐵))) |
174 | 69 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘(𝐴 −
𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) |
175 | 173, 174 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘𝐴) <
((ℑ‘𝐴) −
(ℑ‘𝐵))) |
176 | 152, 175 | eqbrtrd 5096 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
((ℑ‘𝐴) −
0) < ((ℑ‘𝐴)
− (ℑ‘𝐵))) |
177 | 150 | imcld 14906 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘𝐵) ∈
ℝ) |
178 | 177, 31, 153 | ltsub2d 11585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
((ℑ‘𝐵) < 0
↔ ((ℑ‘𝐴)
− 0) < ((ℑ‘𝐴) − (ℑ‘𝐵)))) |
179 | 176, 178 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘𝐵) <
0) |
180 | | argimlt0 25768 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℂ ∧
(ℑ‘𝐵) < 0)
→ (ℑ‘(log‘𝐵)) ∈ (-π(,)0)) |
181 | 150, 179,
180 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘(log‘𝐵)) ∈ (-π(,)0)) |
182 | | eliooord 13138 |
. . . . . . . . 9
⊢
((ℑ‘(log‘𝐵)) ∈ (-π(,)0) → (-π <
(ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < 0)) |
183 | 181, 182 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → (-π <
(ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < 0)) |
184 | 183 | simprd 496 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
(ℑ‘(log‘𝐵)) < 0) |
185 | 13, 31, 30, 184 | ltsub1dd 11587 |
. . . . . 6
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < (0 −
(ℑ‘(log‘𝐴)))) |
186 | 185, 67 | breqtrrdi 5116 |
. . . . 5
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) <
-(ℑ‘(log‘𝐴))) |
187 | 35 | simpld 495 |
. . . . . 6
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π <
(ℑ‘(log‘𝐴))) |
188 | | ltnegcon1 11476 |
. . . . . . 7
⊢ ((π
∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π <
(ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) < π)) |
189 | 1, 30, 188 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) → (-π <
(ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) < π)) |
190 | 187, 189 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
-(ℑ‘(log‘𝐴)) < π) |
191 | 23, 149, 148, 186, 190 | lttrd 11136 |
. . . 4
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < π) |
192 | 23, 148, 191 | ltled 11123 |
. . 3
⊢ ((𝜑 ∧ (ℑ‘𝐴) < 0) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π) |
193 | 24 | simprd 496 |
. . . . 5
⊢ (𝜑 →
(ℑ‘(log‘𝐵)) ≤ π) |
194 | 193 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) →
(ℑ‘(log‘𝐵)) ≤ π) |
195 | 52, 194 | eqbrtrd 5096 |
. . 3
⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π) |
196 | 1 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → π ∈
ℝ) |
197 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
(ℑ‘(log‘𝐵)) ∈ ℝ) |
198 | | 0red 10978 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 ∈
ℝ) |
199 | 21 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℝ) |
200 | 61 | simpld 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 <
(ℑ‘(log‘𝐴))) |
201 | 198, 199,
197, 200 | ltsub2dd 11588 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) <
((ℑ‘(log‘𝐵)) − 0)) |
202 | 27 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
(ℑ‘(log‘𝐵)) ∈ ℂ) |
203 | 202 | subid1d 11321 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
((ℑ‘(log‘𝐵)) − 0) =
(ℑ‘(log‘𝐵))) |
204 | 201, 203 | breqtrd 5100 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) <
(ℑ‘(log‘𝐵))) |
205 | 138 | simprd 496 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
(ℑ‘(log‘𝐵)) < π) |
206 | 57, 197, 196, 204, 205 | lttrd 11136 |
. . . 4
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < π) |
207 | 57, 196, 206 | ltled 11123 |
. . 3
⊢ ((𝜑 ∧ 0 < (ℑ‘𝐴)) →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π) |
208 | 192, 195,
207, 146 | mpjao3dan 1430 |
. 2
⊢ (𝜑 →
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π) |
209 | 147, 208 | jca 512 |
1
⊢ (𝜑 → (-π <
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧
((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)) |