MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcnlem3 Structured version   Visualization version   GIF version

Theorem logcnlem3 25905
Description: Lemma for logcn 25908. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypotheses
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
logcnlem.s 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
logcnlem.t 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
logcnlem.a (𝜑𝐴𝐷)
logcnlem.r (𝜑𝑅 ∈ ℝ+)
logcnlem.b (𝜑𝐵𝐷)
logcnlem.l (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
Assertion
Ref Expression
logcnlem3 (𝜑 → (-π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧ ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π))

Proof of Theorem logcnlem3
StepHypRef Expression
1 pire 25721 . . . . . 6 π ∈ ℝ
21renegcli 11383 . . . . 5 -π ∈ ℝ
32a1i 11 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π ∈ ℝ)
4 logcnlem.b . . . . . . . 8 (𝜑𝐵𝐷)
5 logcn.d . . . . . . . . . 10 𝐷 = (ℂ ∖ (-∞(,]0))
65ellogdm 25900 . . . . . . . . 9 (𝐵𝐷 ↔ (𝐵 ∈ ℂ ∧ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ+)))
76simplbi 498 . . . . . . . 8 (𝐵𝐷𝐵 ∈ ℂ)
84, 7syl 17 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
95logdmn0 25901 . . . . . . . 8 (𝐵𝐷𝐵 ≠ 0)
104, 9syl 17 . . . . . . 7 (𝜑𝐵 ≠ 0)
118, 10logcld 25832 . . . . . 6 (𝜑 → (log‘𝐵) ∈ ℂ)
1211imcld 15005 . . . . 5 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℝ)
1312adantr 481 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐵)) ∈ ℝ)
14 logcnlem.a . . . . . . . . 9 (𝜑𝐴𝐷)
155ellogdm 25900 . . . . . . . . . 10 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
1615simplbi 498 . . . . . . . . 9 (𝐴𝐷𝐴 ∈ ℂ)
1714, 16syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
185logdmn0 25901 . . . . . . . . 9 (𝐴𝐷𝐴 ≠ 0)
1914, 18syl 17 . . . . . . . 8 (𝜑𝐴 ≠ 0)
2017, 19logcld 25832 . . . . . . 7 (𝜑 → (log‘𝐴) ∈ ℂ)
2120imcld 15005 . . . . . 6 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
2212, 21resubcld 11504 . . . . 5 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∈ ℝ)
2322adantr 481 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∈ ℝ)
248, 10logimcld 25833 . . . . . 6 (𝜑 → (-π < (ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) ≤ π))
2524simpld 495 . . . . 5 (𝜑 → -π < (ℑ‘(log‘𝐵)))
2625adantr 481 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π < (ℑ‘(log‘𝐵)))
2712recnd 11104 . . . . . . 7 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℂ)
2827adantr 481 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐵)) ∈ ℂ)
2928subid1d 11422 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − 0) = (ℑ‘(log‘𝐵)))
3021adantr 481 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
31 0red 11079 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → 0 ∈ ℝ)
32 argimlt0 25874 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ (-π(,)0))
3317, 32sylan 580 . . . . . . . 8 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ (-π(,)0))
34 eliooord 13239 . . . . . . . 8 ((ℑ‘(log‘𝐴)) ∈ (-π(,)0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < 0))
3533, 34syl 17 . . . . . . 7 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < 0))
3635simprd 496 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) < 0)
3730, 31, 13, 36ltsub2dd 11689 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − 0) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
3829, 37eqbrtrrd 5116 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐵)) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
393, 13, 23, 26, 38lttrd 11237 . . 3 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
4025adantr 481 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) = 0) → -π < (ℑ‘(log‘𝐵)))
41 reim0b 14929 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
4217, 41syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
4315simprbi 497 . . . . . . . . . . 11 (𝐴𝐷 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
4414, 43syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
4542, 44sylbird 259 . . . . . . . . 9 (𝜑 → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ+))
4645imp 407 . . . . . . . 8 ((𝜑 ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈ ℝ+)
4746relogcld 25884 . . . . . . 7 ((𝜑 ∧ (ℑ‘𝐴) = 0) → (log‘𝐴) ∈ ℝ)
4847reim0d 15035 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) = 0) → (ℑ‘(log‘𝐴)) = 0)
4948oveq2d 7353 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) = 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐵)) − 0))
5027subid1d 11422 . . . . . 6 (𝜑 → ((ℑ‘(log‘𝐵)) − 0) = (ℑ‘(log‘𝐵)))
5150adantr 481 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) = 0) → ((ℑ‘(log‘𝐵)) − 0) = (ℑ‘(log‘𝐵)))
5249, 51eqtrd 2776 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) = 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐵)))
5340, 52breqtrrd 5120 . . 3 ((𝜑 ∧ (ℑ‘𝐴) = 0) → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
542a1i 11 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -π ∈ ℝ)
5521renegcld 11503 . . . . 5 (𝜑 → -(ℑ‘(log‘𝐴)) ∈ ℝ)
5655adantr 481 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -(ℑ‘(log‘𝐴)) ∈ ℝ)
5722adantr 481 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∈ ℝ)
58 argimgt0 25873 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
5917, 58sylan 580 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
60 eliooord 13239 . . . . . . 7 ((ℑ‘(log‘𝐴)) ∈ (0(,)π) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
6159, 60syl 17 . . . . . 6 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
6261simprd 496 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) < π)
63 ltneg 11576 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
6421, 1, 63sylancl 586 . . . . . 6 (𝜑 → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
6564adantr 481 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
6662, 65mpbid 231 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -π < -(ℑ‘(log‘𝐴)))
67 df-neg 11309 . . . . 5 -(ℑ‘(log‘𝐴)) = (0 − (ℑ‘(log‘𝐴)))
688adantr 481 . . . . . . . . 9 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝐵 ∈ ℂ)
6917, 8imsubd 15027 . . . . . . . . . . . . 13 (𝜑 → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
7069adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
7117, 8subcld 11433 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐵) ∈ ℂ)
7271imcld 15005 . . . . . . . . . . . . . 14 (𝜑 → (ℑ‘(𝐴𝐵)) ∈ ℝ)
7372adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴𝐵)) ∈ ℝ)
7471abscld 15247 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
7574adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (abs‘(𝐴𝐵)) ∈ ℝ)
7617adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
7776imcld 15005 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ∈ ℝ)
78 absimle 15120 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵) ∈ ℂ → (abs‘(ℑ‘(𝐴𝐵))) ≤ (abs‘(𝐴𝐵)))
7971, 78syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(ℑ‘(𝐴𝐵))) ≤ (abs‘(𝐴𝐵)))
8072, 74absled 15241 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘(ℑ‘(𝐴𝐵))) ≤ (abs‘(𝐴𝐵)) ↔ (-(abs‘(𝐴𝐵)) ≤ (ℑ‘(𝐴𝐵)) ∧ (ℑ‘(𝐴𝐵)) ≤ (abs‘(𝐴𝐵)))))
8179, 80mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (-(abs‘(𝐴𝐵)) ≤ (ℑ‘(𝐴𝐵)) ∧ (ℑ‘(𝐴𝐵)) ≤ (abs‘(𝐴𝐵))))
8281simprd 496 . . . . . . . . . . . . . 14 (𝜑 → (ℑ‘(𝐴𝐵)) ≤ (abs‘(𝐴𝐵)))
8382adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴𝐵)) ≤ (abs‘(𝐴𝐵)))
84 logcnlem.s . . . . . . . . . . . . . . . . . 18 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
85 rpre 12839 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
8685adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
8717imcld 15005 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
8887recnd 11104 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
8988abscld 15247 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ)
9089adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
9186, 90ifclda 4508 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ)
9284, 91eqeltrid 2841 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ ℝ)
93 logcnlem.t . . . . . . . . . . . . . . . . . 18 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
9417abscld 15247 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐴) ∈ ℝ)
95 logcnlem.r . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ ℝ+)
9695rpred 12873 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ ℝ)
97 1rp 12835 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ+
98 rpaddcl 12853 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+)
9997, 95, 98sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℝ+)
10096, 99rerpdivcld 12904 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ)
10194, 100remulcld 11106 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ)
10293, 101eqeltrid 2841 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ ℝ)
10392, 102ifcld 4519 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑆𝑇, 𝑆, 𝑇) ∈ ℝ)
104 logcnlem.l . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
105 min1 13024 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) → if(𝑆𝑇, 𝑆, 𝑇) ≤ 𝑆)
10692, 102, 105syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑆𝑇, 𝑆, 𝑇) ≤ 𝑆)
10774, 103, 92, 104, 106ltletrd 11236 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝐴𝐵)) < 𝑆)
108107adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (abs‘(𝐴𝐵)) < 𝑆)
109 gt0ne0 11541 . . . . . . . . . . . . . . . . 17 (((ℑ‘𝐴) ∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
11087, 109sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
11185, 42syl5ib 243 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 ∈ ℝ+ → (ℑ‘𝐴) = 0))
112111necon3ad 2953 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((ℑ‘𝐴) ≠ 0 → ¬ 𝐴 ∈ ℝ+))
113112imp 407 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (ℑ‘𝐴) ≠ 0) → ¬ 𝐴 ∈ ℝ+)
114 iffalse 4482 . . . . . . . . . . . . . . . . . 18 𝐴 ∈ ℝ+ → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) = (abs‘(ℑ‘𝐴)))
11584, 114eqtrid 2788 . . . . . . . . . . . . . . . . 17 𝐴 ∈ ℝ+𝑆 = (abs‘(ℑ‘𝐴)))
116113, 115syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (ℑ‘𝐴) ≠ 0) → 𝑆 = (abs‘(ℑ‘𝐴)))
117110, 116syldan 591 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝑆 = (abs‘(ℑ‘𝐴)))
118 0re 11078 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
119 ltle 11164 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (0 < (ℑ‘𝐴) → 0 ≤ (ℑ‘𝐴)))
120118, 87, 119sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (0 < (ℑ‘𝐴) → 0 ≤ (ℑ‘𝐴)))
121120imp 407 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 ≤ (ℑ‘𝐴))
12277, 121absidd 15233 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (abs‘(ℑ‘𝐴)) = (ℑ‘𝐴))
123117, 122eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 𝑆 = (ℑ‘𝐴))
124108, 123breqtrd 5118 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (abs‘(𝐴𝐵)) < (ℑ‘𝐴))
12573, 75, 77, 83, 124lelttrd 11234 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴𝐵)) < (ℑ‘𝐴))
12670, 125eqbrtrrd 5116 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) − (ℑ‘𝐵)) < (ℑ‘𝐴))
12788adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ∈ ℂ)
128127subid1d 11422 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
129126, 128breqtrrd 5120 . . . . . . . . . 10 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) − (ℑ‘𝐵)) < ((ℑ‘𝐴) − 0))
130 0red 11079 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
1318imcld 15005 . . . . . . . . . . . 12 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
132130, 131, 87ltsub2d 11686 . . . . . . . . . . 11 (𝜑 → (0 < (ℑ‘𝐵) ↔ ((ℑ‘𝐴) − (ℑ‘𝐵)) < ((ℑ‘𝐴) − 0)))
133132adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘𝐵) ↔ ((ℑ‘𝐴) − (ℑ‘𝐵)) < ((ℑ‘𝐴) − 0)))
134129, 133mpbird 256 . . . . . . . . 9 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘𝐵))
135 argimgt0 25873 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 0 < (ℑ‘𝐵)) → (ℑ‘(log‘𝐵)) ∈ (0(,)π))
13668, 134, 135syl2anc 584 . . . . . . . 8 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐵)) ∈ (0(,)π))
137 eliooord 13239 . . . . . . . 8 ((ℑ‘(log‘𝐵)) ∈ (0(,)π) → (0 < (ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < π))
138136, 137syl 17 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < π))
139138simpld 495 . . . . . 6 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐵)))
140130, 12, 21ltsub1d 11685 . . . . . . 7 (𝜑 → (0 < (ℑ‘(log‘𝐵)) ↔ (0 − (ℑ‘(log‘𝐴))) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))))
141140adantr 481 . . . . . 6 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐵)) ↔ (0 − (ℑ‘(log‘𝐴))) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))))
142139, 141mpbid 231 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (0 − (ℑ‘(log‘𝐴))) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
14367, 142eqbrtrid 5127 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -(ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
14454, 56, 57, 66, 143lttrd 11237 . . 3 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
145 lttri4 11160 . . . 4 (((ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℑ‘𝐴) < 0 ∨ (ℑ‘𝐴) = 0 ∨ 0 < (ℑ‘𝐴)))
14687, 118, 145sylancl 586 . . 3 (𝜑 → ((ℑ‘𝐴) < 0 ∨ (ℑ‘𝐴) = 0 ∨ 0 < (ℑ‘𝐴)))
14739, 53, 144, 146mpjao3dan 1430 . 2 (𝜑 → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
1481a1i 11 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → π ∈ ℝ)
14930renegcld 11503 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -(ℑ‘(log‘𝐴)) ∈ ℝ)
1508adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (ℑ‘𝐴) < 0) → 𝐵 ∈ ℂ)
15188adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) ∈ ℂ)
152151subid1d 11422 . . . . . . . . . . . 12 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
15387adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) ∈ ℝ)
15474renegcld 11503 . . . . . . . . . . . . . . 15 (𝜑 → -(abs‘(𝐴𝐵)) ∈ ℝ)
155154adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -(abs‘(𝐴𝐵)) ∈ ℝ)
15672adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(𝐴𝐵)) ∈ ℝ)
15774adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (abs‘(𝐴𝐵)) ∈ ℝ)
158107adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (abs‘(𝐴𝐵)) < 𝑆)
159118ltnri 11185 . . . . . . . . . . . . . . . . . . . 20 ¬ 0 < 0
160 breq1 5095 . . . . . . . . . . . . . . . . . . . 20 ((ℑ‘𝐴) = 0 → ((ℑ‘𝐴) < 0 ↔ 0 < 0))
161159, 160mtbiri 326 . . . . . . . . . . . . . . . . . . 19 ((ℑ‘𝐴) = 0 → ¬ (ℑ‘𝐴) < 0)
162161necon2ai 2970 . . . . . . . . . . . . . . . . . 18 ((ℑ‘𝐴) < 0 → (ℑ‘𝐴) ≠ 0)
163162, 116sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (ℑ‘𝐴) < 0) → 𝑆 = (abs‘(ℑ‘𝐴)))
164 ltle 11164 . . . . . . . . . . . . . . . . . . . 20 (((ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℑ‘𝐴) < 0 → (ℑ‘𝐴) ≤ 0))
16587, 118, 164sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((ℑ‘𝐴) < 0 → (ℑ‘𝐴) ≤ 0))
166165imp 407 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) ≤ 0)
167153, 166absnidd 15224 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (abs‘(ℑ‘𝐴)) = -(ℑ‘𝐴))
168163, 167eqtrd 2776 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (ℑ‘𝐴) < 0) → 𝑆 = -(ℑ‘𝐴))
169158, 168breqtrd 5118 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (abs‘(𝐴𝐵)) < -(ℑ‘𝐴))
170157, 153, 169ltnegcon2d 11657 . . . . . . . . . . . . . 14 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) < -(abs‘(𝐴𝐵)))
17181simpld 495 . . . . . . . . . . . . . . 15 (𝜑 → -(abs‘(𝐴𝐵)) ≤ (ℑ‘(𝐴𝐵)))
172171adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -(abs‘(𝐴𝐵)) ≤ (ℑ‘(𝐴𝐵)))
173153, 155, 156, 170, 172ltletrd 11236 . . . . . . . . . . . . 13 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) < (ℑ‘(𝐴𝐵)))
17469adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
175173, 174breqtrd 5118 . . . . . . . . . . . 12 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐴) < ((ℑ‘𝐴) − (ℑ‘𝐵)))
176152, 175eqbrtrd 5114 . . . . . . . . . . 11 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘𝐴) − 0) < ((ℑ‘𝐴) − (ℑ‘𝐵)))
177150imcld 15005 . . . . . . . . . . . 12 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐵) ∈ ℝ)
178177, 31, 153ltsub2d 11686 . . . . . . . . . . 11 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘𝐵) < 0 ↔ ((ℑ‘𝐴) − 0) < ((ℑ‘𝐴) − (ℑ‘𝐵))))
179176, 178mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘𝐵) < 0)
180 argimlt0 25874 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ (ℑ‘𝐵) < 0) → (ℑ‘(log‘𝐵)) ∈ (-π(,)0))
181150, 179, 180syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐵)) ∈ (-π(,)0))
182 eliooord 13239 . . . . . . . . 9 ((ℑ‘(log‘𝐵)) ∈ (-π(,)0) → (-π < (ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < 0))
183181, 182syl 17 . . . . . . . 8 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (-π < (ℑ‘(log‘𝐵)) ∧ (ℑ‘(log‘𝐵)) < 0))
184183simprd 496 . . . . . . 7 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐵)) < 0)
18513, 31, 30, 184ltsub1dd 11688 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < (0 − (ℑ‘(log‘𝐴))))
186185, 67breqtrrdi 5134 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < -(ℑ‘(log‘𝐴)))
18735simpld 495 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -π < (ℑ‘(log‘𝐴)))
188 ltnegcon1 11577 . . . . . . 7 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) < π))
1891, 30, 188sylancr 587 . . . . . 6 ((𝜑 ∧ (ℑ‘𝐴) < 0) → (-π < (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) < π))
190187, 189mpbid 231 . . . . 5 ((𝜑 ∧ (ℑ‘𝐴) < 0) → -(ℑ‘(log‘𝐴)) < π)
19123, 149, 148, 186, 190lttrd 11237 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < π)
19223, 148, 191ltled 11224 . . 3 ((𝜑 ∧ (ℑ‘𝐴) < 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
19324simprd 496 . . . . 5 (𝜑 → (ℑ‘(log‘𝐵)) ≤ π)
194193adantr 481 . . . 4 ((𝜑 ∧ (ℑ‘𝐴) = 0) → (ℑ‘(log‘𝐵)) ≤ π)
19552, 194eqbrtrd 5114 . . 3 ((𝜑 ∧ (ℑ‘𝐴) = 0) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
1961a1i 11 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → π ∈ ℝ)
19712adantr 481 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐵)) ∈ ℝ)
198 0red 11079 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 ∈ ℝ)
19921adantr 481 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
20061simpld 495 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐴)))
201198, 199, 197, 200ltsub2dd 11689 . . . . . 6 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < ((ℑ‘(log‘𝐵)) − 0))
20227adantr 481 . . . . . . 7 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐵)) ∈ ℂ)
203202subid1d 11422 . . . . . 6 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − 0) = (ℑ‘(log‘𝐵)))
204201, 203breqtrd 5118 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < (ℑ‘(log‘𝐵)))
205138simprd 496 . . . . 5 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐵)) < π)
20657, 197, 196, 204, 205lttrd 11237 . . . 4 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) < π)
20757, 196, 206ltled 11224 . . 3 ((𝜑 ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
208192, 195, 207, 146mpjao3dan 1430 . 2 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
209147, 208jca 512 1 (𝜑 → (-π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧ ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085   = wceq 1540  wcel 2105  wne 2940  cdif 3895  ifcif 4473   class class class wbr 5092  cfv 6479  (class class class)co 7337  cc 10970  cr 10971  0cc0 10972  1c1 10973   + caddc 10975   · cmul 10977  -∞cmnf 11108   < clt 11110  cle 11111  cmin 11306  -cneg 11307   / cdiv 11733  +crp 12831  (,)cioo 13180  (,]cioc 13181  cim 14908  abscabs 15044  πcpi 15875  logclog 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-pm 8689  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ioo 13184  df-ioc 13185  df-ico 13186  df-icc 13187  df-fz 13341  df-fzo 13484  df-fl 13613  df-mod 13691  df-seq 13823  df-exp 13884  df-fac 14089  df-bc 14118  df-hash 14146  df-shft 14877  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-ef 15876  df-sin 15878  df-cos 15879  df-pi 15881  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-lp 22393  df-perf 22394  df-cn 22484  df-cnp 22485  df-haus 22572  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cncf 24147  df-limc 25136  df-dv 25137  df-log 25818
This theorem is referenced by:  logcnlem4  25906
  Copyright terms: Public domain W3C validator