Step | Hyp | Ref
| Expression |
1 | | simpll 767 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝜑) |
2 | | ivthicc.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (𝐴[,]𝐵)) |
3 | | ivthicc.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
4 | | ivthicc.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | | elicc2 13000 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵))) |
6 | 3, 4, 5 | syl2anc 587 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵))) |
7 | 2, 6 | mpbid 235 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵)) |
8 | 7 | simp1d 1144 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℝ) |
9 | 8 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ) |
10 | | ivthicc.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (𝐴[,]𝐵)) |
11 | | elicc2 13000 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵))) |
12 | 3, 4, 11 | syl2anc 587 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵))) |
13 | 10, 12 | mpbid 235 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵)) |
14 | 13 | simp1d 1144 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℝ) |
15 | 14 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ) |
16 | | fveq2 6717 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) |
17 | 16 | eleq1d 2822 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑀) ∈ ℝ)) |
18 | | ivthicc.8 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
19 | 18 | ralrimiva 3105 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
20 | 17, 19, 2 | rspcdva 3539 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
21 | | fveq2 6717 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → (𝐹‘𝑥) = (𝐹‘𝑁)) |
22 | 21 | eleq1d 2822 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑁) ∈ ℝ)) |
23 | 22, 19, 10 | rspcdva 3539 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
24 | | iccssre 13017 |
. . . . . . . . 9
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ (𝐹‘𝑁) ∈ ℝ) → ((𝐹‘𝑀)[,](𝐹‘𝑁)) ⊆ ℝ) |
25 | 20, 23, 24 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘𝑀)[,](𝐹‘𝑁)) ⊆ ℝ) |
26 | 25 | sselda 3901 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) → 𝑦 ∈ ℝ) |
27 | 26 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ℝ) |
28 | | simpr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁) |
29 | 7 | simp2d 1145 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≤ 𝑀) |
30 | 13 | simp3d 1146 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ≤ 𝐵) |
31 | | iccss 13003 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝑀 ∧ 𝑁 ≤ 𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵)) |
32 | 3, 4, 29, 30, 31 | syl22anc 839 |
. . . . . . . 8
⊢ (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵)) |
33 | | ivthicc.5 |
. . . . . . . 8
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
34 | 32, 33 | sstrd 3911 |
. . . . . . 7
⊢ (𝜑 → (𝑀[,]𝑁) ⊆ 𝐷) |
35 | 34 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → (𝑀[,]𝑁) ⊆ 𝐷) |
36 | | ivthicc.7 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
37 | 36 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝐹 ∈ (𝐷–cn→ℂ)) |
38 | 32 | sselda 3901 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴[,]𝐵)) |
39 | 38, 18 | syldan 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝐹‘𝑥) ∈ ℝ) |
40 | 1, 39 | sylan 583 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝐹‘𝑥) ∈ ℝ) |
41 | | elicc2 13000 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ (𝐹‘𝑁) ∈ ℝ) → (𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁)))) |
42 | 20, 23, 41 | syl2anc 587 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁)))) |
43 | 42 | biimpa 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) → (𝑦 ∈ ℝ ∧ (𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁))) |
44 | | 3simpc 1152 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁)) → ((𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁))) |
45 | 43, 44 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) → ((𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁))) |
46 | 45 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → ((𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁))) |
47 | 9, 15, 27, 28, 35, 37, 40, 46 | ivthle 24353 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → ∃𝑧 ∈ (𝑀[,]𝑁)(𝐹‘𝑧) = 𝑦) |
48 | 34 | sselda 3901 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑀[,]𝑁)) → 𝑧 ∈ 𝐷) |
49 | | cncff 23790 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐷–cn→ℂ) → 𝐹:𝐷⟶ℂ) |
50 | | ffn 6545 |
. . . . . . . . . 10
⊢ (𝐹:𝐷⟶ℂ → 𝐹 Fn 𝐷) |
51 | 36, 49, 50 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn 𝐷) |
52 | | fnfvelrn 6901 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐷 ∧ 𝑧 ∈ 𝐷) → (𝐹‘𝑧) ∈ ran 𝐹) |
53 | 51, 52 | sylan 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝐹‘𝑧) ∈ ran 𝐹) |
54 | | eleq1 2825 |
. . . . . . . 8
⊢ ((𝐹‘𝑧) = 𝑦 → ((𝐹‘𝑧) ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐹)) |
55 | 53, 54 | syl5ibcom 248 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ((𝐹‘𝑧) = 𝑦 → 𝑦 ∈ ran 𝐹)) |
56 | 48, 55 | syldan 594 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑀[,]𝑁)) → ((𝐹‘𝑧) = 𝑦 → 𝑦 ∈ ran 𝐹)) |
57 | 56 | rexlimdva 3203 |
. . . . 5
⊢ (𝜑 → (∃𝑧 ∈ (𝑀[,]𝑁)(𝐹‘𝑧) = 𝑦 → 𝑦 ∈ ran 𝐹)) |
58 | 1, 47, 57 | sylc 65 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ran 𝐹) |
59 | | simplr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) |
60 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁) |
61 | 60 | fveq2d 6721 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → (𝐹‘𝑀) = (𝐹‘𝑁)) |
62 | 61 | oveq2d 7229 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹‘𝑀)[,](𝐹‘𝑀)) = ((𝐹‘𝑀)[,](𝐹‘𝑁))) |
63 | 20 | rexrd 10883 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑀) ∈
ℝ*) |
64 | 63 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → (𝐹‘𝑀) ∈
ℝ*) |
65 | | iccid 12980 |
. . . . . . . . 9
⊢ ((𝐹‘𝑀) ∈ ℝ* → ((𝐹‘𝑀)[,](𝐹‘𝑀)) = {(𝐹‘𝑀)}) |
66 | 64, 65 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹‘𝑀)[,](𝐹‘𝑀)) = {(𝐹‘𝑀)}) |
67 | 62, 66 | eqtr3d 2779 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹‘𝑀)[,](𝐹‘𝑁)) = {(𝐹‘𝑀)}) |
68 | 59, 67 | eleqtrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ {(𝐹‘𝑀)}) |
69 | | elsni 4558 |
. . . . . 6
⊢ (𝑦 ∈ {(𝐹‘𝑀)} → 𝑦 = (𝐹‘𝑀)) |
70 | 68, 69 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 = (𝐹‘𝑀)) |
71 | 33, 2 | sseldd 3902 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ 𝐷) |
72 | | fnfvelrn 6901 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐷 ∧ 𝑀 ∈ 𝐷) → (𝐹‘𝑀) ∈ ran 𝐹) |
73 | 51, 71, 72 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑀) ∈ ran 𝐹) |
74 | 73 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → (𝐹‘𝑀) ∈ ran 𝐹) |
75 | 70, 74 | eqeltrd 2838 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ran 𝐹) |
76 | | simpll 767 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝜑) |
77 | 14 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℝ) |
78 | 8 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℝ) |
79 | 26 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ℝ) |
80 | | simpr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀) |
81 | 13 | simp2d 1145 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≤ 𝑁) |
82 | 7 | simp3d 1146 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ≤ 𝐵) |
83 | | iccss 13003 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝑁 ∧ 𝑀 ≤ 𝐵)) → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵)) |
84 | 3, 4, 81, 82, 83 | syl22anc 839 |
. . . . . . . 8
⊢ (𝜑 → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵)) |
85 | 84, 33 | sstrd 3911 |
. . . . . . 7
⊢ (𝜑 → (𝑁[,]𝑀) ⊆ 𝐷) |
86 | 85 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → (𝑁[,]𝑀) ⊆ 𝐷) |
87 | 36 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝐹 ∈ (𝐷–cn→ℂ)) |
88 | 84 | sselda 3901 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁[,]𝑀)) → 𝑥 ∈ (𝐴[,]𝐵)) |
89 | 88, 18 | syldan 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁[,]𝑀)) → (𝐹‘𝑥) ∈ ℝ) |
90 | 76, 89 | sylan 583 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑁[,]𝑀)) → (𝐹‘𝑥) ∈ ℝ) |
91 | 45 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → ((𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁))) |
92 | 77, 78, 79, 80, 86, 87, 90, 91 | ivthle2 24354 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → ∃𝑧 ∈ (𝑁[,]𝑀)(𝐹‘𝑧) = 𝑦) |
93 | 85 | sselda 3901 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑁[,]𝑀)) → 𝑧 ∈ 𝐷) |
94 | 93, 55 | syldan 594 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑁[,]𝑀)) → ((𝐹‘𝑧) = 𝑦 → 𝑦 ∈ ran 𝐹)) |
95 | 94 | rexlimdva 3203 |
. . . . 5
⊢ (𝜑 → (∃𝑧 ∈ (𝑁[,]𝑀)(𝐹‘𝑧) = 𝑦 → 𝑦 ∈ ran 𝐹)) |
96 | 76, 92, 95 | sylc 65 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ran 𝐹) |
97 | 8, 14 | lttri4d 10973 |
. . . . 5
⊢ (𝜑 → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
98 | 97 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
99 | 58, 75, 96, 98 | mpjao3dan 1433 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) → 𝑦 ∈ ran 𝐹) |
100 | 99 | ex 416 |
. 2
⊢ (𝜑 → (𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁)) → 𝑦 ∈ ran 𝐹)) |
101 | 100 | ssrdv 3907 |
1
⊢ (𝜑 → ((𝐹‘𝑀)[,](𝐹‘𝑁)) ⊆ ran 𝐹) |