Step | Hyp | Ref
| Expression |
1 | | simpll 765 |
. . . . 5
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π) |
2 | | ivthicc.3 |
. . . . . . . . 9
β’ (π β π β (π΄[,]π΅)) |
3 | | ivthicc.1 |
. . . . . . . . . 10
β’ (π β π΄ β β) |
4 | | ivthicc.2 |
. . . . . . . . . 10
β’ (π β π΅ β β) |
5 | | elicc2 13385 |
. . . . . . . . . 10
β’ ((π΄ β β β§ π΅ β β) β (π β (π΄[,]π΅) β (π β β β§ π΄ β€ π β§ π β€ π΅))) |
6 | 3, 4, 5 | syl2anc 584 |
. . . . . . . . 9
β’ (π β (π β (π΄[,]π΅) β (π β β β§ π΄ β€ π β§ π β€ π΅))) |
7 | 2, 6 | mpbid 231 |
. . . . . . . 8
β’ (π β (π β β β§ π΄ β€ π β§ π β€ π΅)) |
8 | 7 | simp1d 1142 |
. . . . . . 7
β’ (π β π β β) |
9 | 8 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π β β) |
10 | | ivthicc.4 |
. . . . . . . . 9
β’ (π β π β (π΄[,]π΅)) |
11 | | elicc2 13385 |
. . . . . . . . . 10
β’ ((π΄ β β β§ π΅ β β) β (π β (π΄[,]π΅) β (π β β β§ π΄ β€ π β§ π β€ π΅))) |
12 | 3, 4, 11 | syl2anc 584 |
. . . . . . . . 9
β’ (π β (π β (π΄[,]π΅) β (π β β β§ π΄ β€ π β§ π β€ π΅))) |
13 | 10, 12 | mpbid 231 |
. . . . . . . 8
β’ (π β (π β β β§ π΄ β€ π β§ π β€ π΅)) |
14 | 13 | simp1d 1142 |
. . . . . . 7
β’ (π β π β β) |
15 | 14 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π β β) |
16 | | fveq2 6888 |
. . . . . . . . . . 11
β’ (π₯ = π β (πΉβπ₯) = (πΉβπ)) |
17 | 16 | eleq1d 2818 |
. . . . . . . . . 10
β’ (π₯ = π β ((πΉβπ₯) β β β (πΉβπ) β β)) |
18 | | ivthicc.8 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) |
19 | 18 | ralrimiva 3146 |
. . . . . . . . . 10
β’ (π β βπ₯ β (π΄[,]π΅)(πΉβπ₯) β β) |
20 | 17, 19, 2 | rspcdva 3613 |
. . . . . . . . 9
β’ (π β (πΉβπ) β β) |
21 | | fveq2 6888 |
. . . . . . . . . . 11
β’ (π₯ = π β (πΉβπ₯) = (πΉβπ)) |
22 | 21 | eleq1d 2818 |
. . . . . . . . . 10
β’ (π₯ = π β ((πΉβπ₯) β β β (πΉβπ) β β)) |
23 | 22, 19, 10 | rspcdva 3613 |
. . . . . . . . 9
β’ (π β (πΉβπ) β β) |
24 | | iccssre 13402 |
. . . . . . . . 9
β’ (((πΉβπ) β β β§ (πΉβπ) β β) β ((πΉβπ)[,](πΉβπ)) β β) |
25 | 20, 23, 24 | syl2anc 584 |
. . . . . . . 8
β’ (π β ((πΉβπ)[,](πΉβπ)) β β) |
26 | 25 | sselda 3981 |
. . . . . . 7
β’ ((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β π¦ β β) |
27 | 26 | adantr 481 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π¦ β β) |
28 | | simpr 485 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π < π) |
29 | 7 | simp2d 1143 |
. . . . . . . . 9
β’ (π β π΄ β€ π) |
30 | 13 | simp3d 1144 |
. . . . . . . . 9
β’ (π β π β€ π΅) |
31 | | iccss 13388 |
. . . . . . . . 9
β’ (((π΄ β β β§ π΅ β β) β§ (π΄ β€ π β§ π β€ π΅)) β (π[,]π) β (π΄[,]π΅)) |
32 | 3, 4, 29, 30, 31 | syl22anc 837 |
. . . . . . . 8
β’ (π β (π[,]π) β (π΄[,]π΅)) |
33 | | ivthicc.5 |
. . . . . . . 8
β’ (π β (π΄[,]π΅) β π·) |
34 | 32, 33 | sstrd 3991 |
. . . . . . 7
β’ (π β (π[,]π) β π·) |
35 | 34 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β (π[,]π) β π·) |
36 | | ivthicc.7 |
. . . . . . 7
β’ (π β πΉ β (π·βcnββ)) |
37 | 36 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β πΉ β (π·βcnββ)) |
38 | 32 | sselda 3981 |
. . . . . . . 8
β’ ((π β§ π₯ β (π[,]π)) β π₯ β (π΄[,]π΅)) |
39 | 38, 18 | syldan 591 |
. . . . . . 7
β’ ((π β§ π₯ β (π[,]π)) β (πΉβπ₯) β β) |
40 | 1, 39 | sylan 580 |
. . . . . 6
β’ ((((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β§ π₯ β (π[,]π)) β (πΉβπ₯) β β) |
41 | | elicc2 13385 |
. . . . . . . . . 10
β’ (((πΉβπ) β β β§ (πΉβπ) β β) β (π¦ β ((πΉβπ)[,](πΉβπ)) β (π¦ β β β§ (πΉβπ) β€ π¦ β§ π¦ β€ (πΉβπ)))) |
42 | 20, 23, 41 | syl2anc 584 |
. . . . . . . . 9
β’ (π β (π¦ β ((πΉβπ)[,](πΉβπ)) β (π¦ β β β§ (πΉβπ) β€ π¦ β§ π¦ β€ (πΉβπ)))) |
43 | 42 | biimpa 477 |
. . . . . . . 8
β’ ((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β (π¦ β β β§ (πΉβπ) β€ π¦ β§ π¦ β€ (πΉβπ))) |
44 | | 3simpc 1150 |
. . . . . . . 8
β’ ((π¦ β β β§ (πΉβπ) β€ π¦ β§ π¦ β€ (πΉβπ)) β ((πΉβπ) β€ π¦ β§ π¦ β€ (πΉβπ))) |
45 | 43, 44 | syl 17 |
. . . . . . 7
β’ ((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β ((πΉβπ) β€ π¦ β§ π¦ β€ (πΉβπ))) |
46 | 45 | adantr 481 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β ((πΉβπ) β€ π¦ β§ π¦ β€ (πΉβπ))) |
47 | 9, 15, 27, 28, 35, 37, 40, 46 | ivthle 24964 |
. . . . 5
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β βπ§ β (π[,]π)(πΉβπ§) = π¦) |
48 | 34 | sselda 3981 |
. . . . . . 7
β’ ((π β§ π§ β (π[,]π)) β π§ β π·) |
49 | | cncff 24400 |
. . . . . . . . . 10
β’ (πΉ β (π·βcnββ) β πΉ:π·βΆβ) |
50 | | ffn 6714 |
. . . . . . . . . 10
β’ (πΉ:π·βΆβ β πΉ Fn π·) |
51 | 36, 49, 50 | 3syl 18 |
. . . . . . . . 9
β’ (π β πΉ Fn π·) |
52 | | fnfvelrn 7079 |
. . . . . . . . 9
β’ ((πΉ Fn π· β§ π§ β π·) β (πΉβπ§) β ran πΉ) |
53 | 51, 52 | sylan 580 |
. . . . . . . 8
β’ ((π β§ π§ β π·) β (πΉβπ§) β ran πΉ) |
54 | | eleq1 2821 |
. . . . . . . 8
β’ ((πΉβπ§) = π¦ β ((πΉβπ§) β ran πΉ β π¦ β ran πΉ)) |
55 | 53, 54 | syl5ibcom 244 |
. . . . . . 7
β’ ((π β§ π§ β π·) β ((πΉβπ§) = π¦ β π¦ β ran πΉ)) |
56 | 48, 55 | syldan 591 |
. . . . . 6
β’ ((π β§ π§ β (π[,]π)) β ((πΉβπ§) = π¦ β π¦ β ran πΉ)) |
57 | 56 | rexlimdva 3155 |
. . . . 5
β’ (π β (βπ§ β (π[,]π)(πΉβπ§) = π¦ β π¦ β ran πΉ)) |
58 | 1, 47, 57 | sylc 65 |
. . . 4
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π¦ β ran πΉ) |
59 | | simplr 767 |
. . . . . . 7
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π = π) β π¦ β ((πΉβπ)[,](πΉβπ))) |
60 | | simpr 485 |
. . . . . . . . . 10
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π = π) β π = π) |
61 | 60 | fveq2d 6892 |
. . . . . . . . 9
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π = π) β (πΉβπ) = (πΉβπ)) |
62 | 61 | oveq2d 7421 |
. . . . . . . 8
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π = π) β ((πΉβπ)[,](πΉβπ)) = ((πΉβπ)[,](πΉβπ))) |
63 | 20 | rexrd 11260 |
. . . . . . . . . 10
β’ (π β (πΉβπ) β
β*) |
64 | 63 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π = π) β (πΉβπ) β
β*) |
65 | | iccid 13365 |
. . . . . . . . 9
β’ ((πΉβπ) β β* β ((πΉβπ)[,](πΉβπ)) = {(πΉβπ)}) |
66 | 64, 65 | syl 17 |
. . . . . . . 8
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π = π) β ((πΉβπ)[,](πΉβπ)) = {(πΉβπ)}) |
67 | 62, 66 | eqtr3d 2774 |
. . . . . . 7
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π = π) β ((πΉβπ)[,](πΉβπ)) = {(πΉβπ)}) |
68 | 59, 67 | eleqtrd 2835 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π = π) β π¦ β {(πΉβπ)}) |
69 | | elsni 4644 |
. . . . . 6
β’ (π¦ β {(πΉβπ)} β π¦ = (πΉβπ)) |
70 | 68, 69 | syl 17 |
. . . . 5
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π = π) β π¦ = (πΉβπ)) |
71 | 33, 2 | sseldd 3982 |
. . . . . . 7
β’ (π β π β π·) |
72 | | fnfvelrn 7079 |
. . . . . . 7
β’ ((πΉ Fn π· β§ π β π·) β (πΉβπ) β ran πΉ) |
73 | 51, 71, 72 | syl2anc 584 |
. . . . . 6
β’ (π β (πΉβπ) β ran πΉ) |
74 | 73 | ad2antrr 724 |
. . . . 5
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π = π) β (πΉβπ) β ran πΉ) |
75 | 70, 74 | eqeltrd 2833 |
. . . 4
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π = π) β π¦ β ran πΉ) |
76 | | simpll 765 |
. . . . 5
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π) |
77 | 14 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π β β) |
78 | 8 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π β β) |
79 | 26 | adantr 481 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π¦ β β) |
80 | | simpr 485 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π < π) |
81 | 13 | simp2d 1143 |
. . . . . . . . 9
β’ (π β π΄ β€ π) |
82 | 7 | simp3d 1144 |
. . . . . . . . 9
β’ (π β π β€ π΅) |
83 | | iccss 13388 |
. . . . . . . . 9
β’ (((π΄ β β β§ π΅ β β) β§ (π΄ β€ π β§ π β€ π΅)) β (π[,]π) β (π΄[,]π΅)) |
84 | 3, 4, 81, 82, 83 | syl22anc 837 |
. . . . . . . 8
β’ (π β (π[,]π) β (π΄[,]π΅)) |
85 | 84, 33 | sstrd 3991 |
. . . . . . 7
β’ (π β (π[,]π) β π·) |
86 | 85 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β (π[,]π) β π·) |
87 | 36 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β πΉ β (π·βcnββ)) |
88 | 84 | sselda 3981 |
. . . . . . . 8
β’ ((π β§ π₯ β (π[,]π)) β π₯ β (π΄[,]π΅)) |
89 | 88, 18 | syldan 591 |
. . . . . . 7
β’ ((π β§ π₯ β (π[,]π)) β (πΉβπ₯) β β) |
90 | 76, 89 | sylan 580 |
. . . . . 6
β’ ((((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β§ π₯ β (π[,]π)) β (πΉβπ₯) β β) |
91 | 45 | adantr 481 |
. . . . . 6
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β ((πΉβπ) β€ π¦ β§ π¦ β€ (πΉβπ))) |
92 | 77, 78, 79, 80, 86, 87, 90, 91 | ivthle2 24965 |
. . . . 5
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β βπ§ β (π[,]π)(πΉβπ§) = π¦) |
93 | 85 | sselda 3981 |
. . . . . . 7
β’ ((π β§ π§ β (π[,]π)) β π§ β π·) |
94 | 93, 55 | syldan 591 |
. . . . . 6
β’ ((π β§ π§ β (π[,]π)) β ((πΉβπ§) = π¦ β π¦ β ran πΉ)) |
95 | 94 | rexlimdva 3155 |
. . . . 5
β’ (π β (βπ§ β (π[,]π)(πΉβπ§) = π¦ β π¦ β ran πΉ)) |
96 | 76, 92, 95 | sylc 65 |
. . . 4
β’ (((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β§ π < π) β π¦ β ran πΉ) |
97 | 8, 14 | lttri4d 11351 |
. . . . 5
β’ (π β (π < π β¨ π = π β¨ π < π)) |
98 | 97 | adantr 481 |
. . . 4
β’ ((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β (π < π β¨ π = π β¨ π < π)) |
99 | 58, 75, 96, 98 | mpjao3dan 1431 |
. . 3
β’ ((π β§ π¦ β ((πΉβπ)[,](πΉβπ))) β π¦ β ran πΉ) |
100 | 99 | ex 413 |
. 2
β’ (π β (π¦ β ((πΉβπ)[,](πΉβπ)) β π¦ β ran πΉ)) |
101 | 100 | ssrdv 3987 |
1
β’ (π β ((πΉβπ)[,](πΉβπ)) β ran πΉ) |