MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthicc Structured version   Visualization version   GIF version

Theorem ivthicc 24822
Description: The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivthicc.1 (𝜑𝐴 ∈ ℝ)
ivthicc.2 (𝜑𝐵 ∈ ℝ)
ivthicc.3 (𝜑𝑀 ∈ (𝐴[,]𝐵))
ivthicc.4 (𝜑𝑁 ∈ (𝐴[,]𝐵))
ivthicc.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivthicc.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivthicc.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
Assertion
Ref Expression
ivthicc (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ran 𝐹)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ivthicc
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝜑)
2 ivthicc.3 . . . . . . . . 9 (𝜑𝑀 ∈ (𝐴[,]𝐵))
3 ivthicc.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4 ivthicc.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
5 elicc2 13329 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵)))
63, 4, 5syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵)))
72, 6mpbid 231 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵))
87simp1d 1142 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
98ad2antrr 724 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
10 ivthicc.4 . . . . . . . . 9 (𝜑𝑁 ∈ (𝐴[,]𝐵))
11 elicc2 13329 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵)))
123, 4, 11syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵)))
1310, 12mpbid 231 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵))
1413simp1d 1142 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
1514ad2antrr 724 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
16 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
1716eleq1d 2822 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
18 ivthicc.8 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1918ralrimiva 3143 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
2017, 19, 2rspcdva 3582 . . . . . . . . 9 (𝜑 → (𝐹𝑀) ∈ ℝ)
21 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2221eleq1d 2822 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
2322, 19, 10rspcdva 3582 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℝ)
24 iccssre 13346 . . . . . . . . 9 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ℝ)
2520, 23, 24syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ℝ)
2625sselda 3944 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → 𝑦 ∈ ℝ)
2726adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ℝ)
28 simpr 485 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
297simp2d 1143 . . . . . . . . 9 (𝜑𝐴𝑀)
3013simp3d 1144 . . . . . . . . 9 (𝜑𝑁𝐵)
31 iccss 13332 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝑀𝑁𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵))
323, 4, 29, 30, 31syl22anc 837 . . . . . . . 8 (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵))
33 ivthicc.5 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
3432, 33sstrd 3954 . . . . . . 7 (𝜑 → (𝑀[,]𝑁) ⊆ 𝐷)
3534ad2antrr 724 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → (𝑀[,]𝑁) ⊆ 𝐷)
36 ivthicc.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
3736ad2antrr 724 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝐹 ∈ (𝐷cn→ℂ))
3832sselda 3944 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴[,]𝐵))
3938, 18syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐹𝑥) ∈ ℝ)
401, 39sylan 580 . . . . . 6 ((((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝐹𝑥) ∈ ℝ)
41 elicc2 13329 . . . . . . . . . 10 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁))))
4220, 23, 41syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁))))
4342biimpa 477 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
44 3simpc 1150 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
4543, 44syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
4645adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
479, 15, 27, 28, 35, 37, 40, 46ivthle 24820 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → ∃𝑧 ∈ (𝑀[,]𝑁)(𝐹𝑧) = 𝑦)
4834sselda 3944 . . . . . . 7 ((𝜑𝑧 ∈ (𝑀[,]𝑁)) → 𝑧𝐷)
49 cncff 24256 . . . . . . . . . 10 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
50 ffn 6668 . . . . . . . . . 10 (𝐹:𝐷⟶ℂ → 𝐹 Fn 𝐷)
5136, 49, 503syl 18 . . . . . . . . 9 (𝜑𝐹 Fn 𝐷)
52 fnfvelrn 7031 . . . . . . . . 9 ((𝐹 Fn 𝐷𝑧𝐷) → (𝐹𝑧) ∈ ran 𝐹)
5351, 52sylan 580 . . . . . . . 8 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ran 𝐹)
54 eleq1 2825 . . . . . . . 8 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ ran 𝐹𝑦 ∈ ran 𝐹))
5553, 54syl5ibcom 244 . . . . . . 7 ((𝜑𝑧𝐷) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
5648, 55syldan 591 . . . . . 6 ((𝜑𝑧 ∈ (𝑀[,]𝑁)) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
5756rexlimdva 3152 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑀[,]𝑁)(𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
581, 47, 57sylc 65 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ran 𝐹)
59 simplr 767 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)))
60 simpr 485 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁)
6160fveq2d 6846 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) = (𝐹𝑁))
6261oveq2d 7373 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑀)) = ((𝐹𝑀)[,](𝐹𝑁)))
6320rexrd 11205 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) ∈ ℝ*)
6463ad2antrr 724 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) ∈ ℝ*)
65 iccid 13309 . . . . . . . . 9 ((𝐹𝑀) ∈ ℝ* → ((𝐹𝑀)[,](𝐹𝑀)) = {(𝐹𝑀)})
6664, 65syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑀)) = {(𝐹𝑀)})
6762, 66eqtr3d 2778 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑁)) = {(𝐹𝑀)})
6859, 67eleqtrd 2840 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ {(𝐹𝑀)})
69 elsni 4603 . . . . . 6 (𝑦 ∈ {(𝐹𝑀)} → 𝑦 = (𝐹𝑀))
7068, 69syl 17 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 = (𝐹𝑀))
7133, 2sseldd 3945 . . . . . . 7 (𝜑𝑀𝐷)
72 fnfvelrn 7031 . . . . . . 7 ((𝐹 Fn 𝐷𝑀𝐷) → (𝐹𝑀) ∈ ran 𝐹)
7351, 71, 72syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
7473ad2antrr 724 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) ∈ ran 𝐹)
7570, 74eqeltrd 2838 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ran 𝐹)
76 simpll 765 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝜑)
7714ad2antrr 724 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℝ)
788ad2antrr 724 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℝ)
7926adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ℝ)
80 simpr 485 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀)
8113simp2d 1143 . . . . . . . . 9 (𝜑𝐴𝑁)
827simp3d 1144 . . . . . . . . 9 (𝜑𝑀𝐵)
83 iccss 13332 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝑁𝑀𝐵)) → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵))
843, 4, 81, 82, 83syl22anc 837 . . . . . . . 8 (𝜑 → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵))
8584, 33sstrd 3954 . . . . . . 7 (𝜑 → (𝑁[,]𝑀) ⊆ 𝐷)
8685ad2antrr 724 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → (𝑁[,]𝑀) ⊆ 𝐷)
8736ad2antrr 724 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝐹 ∈ (𝐷cn→ℂ))
8884sselda 3944 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑁[,]𝑀)) → 𝑥 ∈ (𝐴[,]𝐵))
8988, 18syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝑁[,]𝑀)) → (𝐹𝑥) ∈ ℝ)
9076, 89sylan 580 . . . . . 6 ((((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑁[,]𝑀)) → (𝐹𝑥) ∈ ℝ)
9145adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
9277, 78, 79, 80, 86, 87, 90, 91ivthle2 24821 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → ∃𝑧 ∈ (𝑁[,]𝑀)(𝐹𝑧) = 𝑦)
9385sselda 3944 . . . . . . 7 ((𝜑𝑧 ∈ (𝑁[,]𝑀)) → 𝑧𝐷)
9493, 55syldan 591 . . . . . 6 ((𝜑𝑧 ∈ (𝑁[,]𝑀)) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
9594rexlimdva 3152 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑁[,]𝑀)(𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
9676, 92, 95sylc 65 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ran 𝐹)
978, 14lttri4d 11296 . . . . 5 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
9897adantr 481 . . . 4 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
9958, 75, 96, 98mpjao3dan 1431 . . 3 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → 𝑦 ∈ ran 𝐹)
10099ex 413 . 2 (𝜑 → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) → 𝑦 ∈ ran 𝐹))
101100ssrdv 3950 1 (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  wss 3910  {csn 4586   class class class wbr 5105  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  *cxr 11188   < clt 11189  cle 11190  [,]cicc 13267  cnccncf 24239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241
This theorem is referenced by:  evthicc2  24824
  Copyright terms: Public domain W3C validator