MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthicc Structured version   Visualization version   GIF version

Theorem ivthicc 24622
Description: The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivthicc.1 (𝜑𝐴 ∈ ℝ)
ivthicc.2 (𝜑𝐵 ∈ ℝ)
ivthicc.3 (𝜑𝑀 ∈ (𝐴[,]𝐵))
ivthicc.4 (𝜑𝑁 ∈ (𝐴[,]𝐵))
ivthicc.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivthicc.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivthicc.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
Assertion
Ref Expression
ivthicc (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ran 𝐹)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ivthicc
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 764 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝜑)
2 ivthicc.3 . . . . . . . . 9 (𝜑𝑀 ∈ (𝐴[,]𝐵))
3 ivthicc.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4 ivthicc.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
5 elicc2 13144 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵)))
63, 4, 5syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵)))
72, 6mpbid 231 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵))
87simp1d 1141 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
98ad2antrr 723 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
10 ivthicc.4 . . . . . . . . 9 (𝜑𝑁 ∈ (𝐴[,]𝐵))
11 elicc2 13144 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵)))
123, 4, 11syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵)))
1310, 12mpbid 231 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵))
1413simp1d 1141 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
1514ad2antrr 723 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
16 fveq2 6774 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
1716eleq1d 2823 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
18 ivthicc.8 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1918ralrimiva 3103 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
2017, 19, 2rspcdva 3562 . . . . . . . . 9 (𝜑 → (𝐹𝑀) ∈ ℝ)
21 fveq2 6774 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2221eleq1d 2823 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
2322, 19, 10rspcdva 3562 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℝ)
24 iccssre 13161 . . . . . . . . 9 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ℝ)
2520, 23, 24syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ℝ)
2625sselda 3921 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → 𝑦 ∈ ℝ)
2726adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ℝ)
28 simpr 485 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
297simp2d 1142 . . . . . . . . 9 (𝜑𝐴𝑀)
3013simp3d 1143 . . . . . . . . 9 (𝜑𝑁𝐵)
31 iccss 13147 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝑀𝑁𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵))
323, 4, 29, 30, 31syl22anc 836 . . . . . . . 8 (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵))
33 ivthicc.5 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
3432, 33sstrd 3931 . . . . . . 7 (𝜑 → (𝑀[,]𝑁) ⊆ 𝐷)
3534ad2antrr 723 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → (𝑀[,]𝑁) ⊆ 𝐷)
36 ivthicc.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
3736ad2antrr 723 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝐹 ∈ (𝐷cn→ℂ))
3832sselda 3921 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴[,]𝐵))
3938, 18syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐹𝑥) ∈ ℝ)
401, 39sylan 580 . . . . . 6 ((((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝐹𝑥) ∈ ℝ)
41 elicc2 13144 . . . . . . . . . 10 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁))))
4220, 23, 41syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁))))
4342biimpa 477 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
44 3simpc 1149 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
4543, 44syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
4645adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
479, 15, 27, 28, 35, 37, 40, 46ivthle 24620 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → ∃𝑧 ∈ (𝑀[,]𝑁)(𝐹𝑧) = 𝑦)
4834sselda 3921 . . . . . . 7 ((𝜑𝑧 ∈ (𝑀[,]𝑁)) → 𝑧𝐷)
49 cncff 24056 . . . . . . . . . 10 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
50 ffn 6600 . . . . . . . . . 10 (𝐹:𝐷⟶ℂ → 𝐹 Fn 𝐷)
5136, 49, 503syl 18 . . . . . . . . 9 (𝜑𝐹 Fn 𝐷)
52 fnfvelrn 6958 . . . . . . . . 9 ((𝐹 Fn 𝐷𝑧𝐷) → (𝐹𝑧) ∈ ran 𝐹)
5351, 52sylan 580 . . . . . . . 8 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ran 𝐹)
54 eleq1 2826 . . . . . . . 8 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ ran 𝐹𝑦 ∈ ran 𝐹))
5553, 54syl5ibcom 244 . . . . . . 7 ((𝜑𝑧𝐷) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
5648, 55syldan 591 . . . . . 6 ((𝜑𝑧 ∈ (𝑀[,]𝑁)) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
5756rexlimdva 3213 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑀[,]𝑁)(𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
581, 47, 57sylc 65 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ran 𝐹)
59 simplr 766 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)))
60 simpr 485 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁)
6160fveq2d 6778 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) = (𝐹𝑁))
6261oveq2d 7291 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑀)) = ((𝐹𝑀)[,](𝐹𝑁)))
6320rexrd 11025 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) ∈ ℝ*)
6463ad2antrr 723 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) ∈ ℝ*)
65 iccid 13124 . . . . . . . . 9 ((𝐹𝑀) ∈ ℝ* → ((𝐹𝑀)[,](𝐹𝑀)) = {(𝐹𝑀)})
6664, 65syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑀)) = {(𝐹𝑀)})
6762, 66eqtr3d 2780 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑁)) = {(𝐹𝑀)})
6859, 67eleqtrd 2841 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ {(𝐹𝑀)})
69 elsni 4578 . . . . . 6 (𝑦 ∈ {(𝐹𝑀)} → 𝑦 = (𝐹𝑀))
7068, 69syl 17 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 = (𝐹𝑀))
7133, 2sseldd 3922 . . . . . . 7 (𝜑𝑀𝐷)
72 fnfvelrn 6958 . . . . . . 7 ((𝐹 Fn 𝐷𝑀𝐷) → (𝐹𝑀) ∈ ran 𝐹)
7351, 71, 72syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
7473ad2antrr 723 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) ∈ ran 𝐹)
7570, 74eqeltrd 2839 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ran 𝐹)
76 simpll 764 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝜑)
7714ad2antrr 723 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℝ)
788ad2antrr 723 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℝ)
7926adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ℝ)
80 simpr 485 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀)
8113simp2d 1142 . . . . . . . . 9 (𝜑𝐴𝑁)
827simp3d 1143 . . . . . . . . 9 (𝜑𝑀𝐵)
83 iccss 13147 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝑁𝑀𝐵)) → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵))
843, 4, 81, 82, 83syl22anc 836 . . . . . . . 8 (𝜑 → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵))
8584, 33sstrd 3931 . . . . . . 7 (𝜑 → (𝑁[,]𝑀) ⊆ 𝐷)
8685ad2antrr 723 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → (𝑁[,]𝑀) ⊆ 𝐷)
8736ad2antrr 723 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝐹 ∈ (𝐷cn→ℂ))
8884sselda 3921 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑁[,]𝑀)) → 𝑥 ∈ (𝐴[,]𝐵))
8988, 18syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝑁[,]𝑀)) → (𝐹𝑥) ∈ ℝ)
9076, 89sylan 580 . . . . . 6 ((((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑁[,]𝑀)) → (𝐹𝑥) ∈ ℝ)
9145adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
9277, 78, 79, 80, 86, 87, 90, 91ivthle2 24621 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → ∃𝑧 ∈ (𝑁[,]𝑀)(𝐹𝑧) = 𝑦)
9385sselda 3921 . . . . . . 7 ((𝜑𝑧 ∈ (𝑁[,]𝑀)) → 𝑧𝐷)
9493, 55syldan 591 . . . . . 6 ((𝜑𝑧 ∈ (𝑁[,]𝑀)) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
9594rexlimdva 3213 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑁[,]𝑀)(𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
9676, 92, 95sylc 65 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ran 𝐹)
978, 14lttri4d 11116 . . . . 5 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
9897adantr 481 . . . 4 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
9958, 75, 96, 98mpjao3dan 1430 . . 3 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → 𝑦 ∈ ran 𝐹)
10099ex 413 . 2 (𝜑 → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) → 𝑦 ∈ ran 𝐹))
101100ssrdv 3927 1 (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  wss 3887  {csn 4561   class class class wbr 5074  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  *cxr 11008   < clt 11009  cle 11010  [,]cicc 13082  cnccncf 24039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041
This theorem is referenced by:  evthicc2  24624
  Copyright terms: Public domain W3C validator