MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulasslem3 Structured version   Visualization version   GIF version

Theorem xmulasslem3 12433
Description: Lemma for xmulass 12434. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulasslem3 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))

Proof of Theorem xmulasslem3
StepHypRef Expression
1 recn 10364 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 recn 10364 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3 recn 10364 . . . . . . . . . 10 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
4 mulass 10362 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
51, 2, 3, 4syl3an 1160 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
653expa 1108 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
7 remulcl 10359 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
8 rexmul 12418 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) ·e 𝐶) = ((𝐴 · 𝐵) · 𝐶))
97, 8sylan 575 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) ·e 𝐶) = ((𝐴 · 𝐵) · 𝐶))
10 remulcl 10359 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
11 rexmul 12418 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (𝐴 ·e (𝐵 · 𝐶)) = (𝐴 · (𝐵 · 𝐶)))
1210, 11sylan2 586 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴 ·e (𝐵 · 𝐶)) = (𝐴 · (𝐵 · 𝐶)))
1312anassrs 461 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 · 𝐶)) = (𝐴 · (𝐵 · 𝐶)))
146, 9, 133eqtr4d 2824 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 · 𝐶)))
15 rexmul 12418 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
1615adantr 474 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
1716oveq1d 6939 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) ·e 𝐶) = ((𝐴 · 𝐵) ·e 𝐶))
18 rexmul 12418 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ·e 𝐶) = (𝐵 · 𝐶))
1918adantll 704 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐵 ·e 𝐶) = (𝐵 · 𝐶))
2019oveq2d 6940 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 ·e 𝐶)) = (𝐴 ·e (𝐵 · 𝐶)))
2114, 17, 203eqtr4d 2824 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
2221adantll 704 . . . . 5 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
23 oveq2 6932 . . . . . . . . 9 (𝐶 = +∞ → ((𝐴 ·e 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐵) ·e +∞))
24 simp1l 1211 . . . . . . . . . . 11 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐴 ∈ ℝ*)
25 simp2l 1213 . . . . . . . . . . 11 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐵 ∈ ℝ*)
26 xmulcl 12420 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*)
2724, 25, 26syl2anc 579 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐴 ·e 𝐵) ∈ ℝ*)
28 xmulgt0 12430 . . . . . . . . . . 11 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
29283adant3 1123 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 < (𝐴 ·e 𝐵))
30 xmulpnf1 12421 . . . . . . . . . 10 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ 0 < (𝐴 ·e 𝐵)) → ((𝐴 ·e 𝐵) ·e +∞) = +∞)
3127, 29, 30syl2anc 579 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐴 ·e 𝐵) ·e +∞) = +∞)
3223, 31sylan9eqr 2836 . . . . . . . 8 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = +∞)
33 simpl1 1199 . . . . . . . . 9 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐴 ∈ ℝ* ∧ 0 < 𝐴))
34 xmulpnf1 12421 . . . . . . . . 9 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3533, 34syl 17 . . . . . . . 8 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐴 ·e +∞) = +∞)
3632, 35eqtr4d 2817 . . . . . . 7 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e +∞))
37 oveq2 6932 . . . . . . . . 9 (𝐶 = +∞ → (𝐵 ·e 𝐶) = (𝐵 ·e +∞))
38 xmulpnf1 12421 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (𝐵 ·e +∞) = +∞)
39383ad2ant2 1125 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐵 ·e +∞) = +∞)
4037, 39sylan9eqr 2836 . . . . . . . 8 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐵 ·e 𝐶) = +∞)
4140oveq2d 6940 . . . . . . 7 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 ·e 𝐶)) = (𝐴 ·e +∞))
4236, 41eqtr4d 2817 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
4342adantlr 705 . . . . 5 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
44 simpl3r 1260 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < 𝐶)
45 xmulasslem2 12429 . . . . . 6 ((0 < 𝐶𝐶 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
4644, 45sylan 575 . . . . 5 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
47 simp3l 1215 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ*)
48 elxr 12266 . . . . . . 7 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4947, 48sylib 210 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
5049adantr 474 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
5122, 43, 46, 50mpjao3dan 1505 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
5251anassrs 461 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
53 xmulpnf2 12422 . . . . . . . 8 ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (+∞ ·e 𝐶) = +∞)
54533ad2ant3 1126 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (+∞ ·e 𝐶) = +∞)
55343ad2ant1 1124 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐴 ·e +∞) = +∞)
5654, 55eqtr4d 2817 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (+∞ ·e 𝐶) = (𝐴 ·e +∞))
5756adantr 474 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → (+∞ ·e 𝐶) = (𝐴 ·e +∞))
58 oveq2 6932 . . . . . . 7 (𝐵 = +∞ → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
5958, 55sylan9eqr 2836 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = +∞)
6059oveq1d 6939 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (+∞ ·e 𝐶))
61 oveq1 6931 . . . . . . 7 (𝐵 = +∞ → (𝐵 ·e 𝐶) = (+∞ ·e 𝐶))
6261, 54sylan9eqr 2836 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → (𝐵 ·e 𝐶) = +∞)
6362oveq2d 6940 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → (𝐴 ·e (𝐵 ·e 𝐶)) = (𝐴 ·e +∞))
6457, 60, 633eqtr4d 2824 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
6564adantlr 705 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
66 simpl2r 1256 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) → 0 < 𝐵)
67 xmulasslem2 12429 . . . 4 ((0 < 𝐵𝐵 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
6866, 67sylan 575 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
69 elxr 12266 . . . . 5 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7025, 69sylib 210 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7170adantr 474 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7252, 65, 68, 71mpjao3dan 1505 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
73 simpl3 1203 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → (𝐶 ∈ ℝ* ∧ 0 < 𝐶))
7473, 53syl 17 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → (+∞ ·e 𝐶) = +∞)
75 oveq1 6931 . . . . 5 (𝐴 = +∞ → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
76 xmulpnf2 12422 . . . . . 6 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
77763ad2ant2 1125 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (+∞ ·e 𝐵) = +∞)
7875, 77sylan9eqr 2836 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐵) = +∞)
7978oveq1d 6939 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (+∞ ·e 𝐶))
80 oveq1 6931 . . . 4 (𝐴 = +∞ → (𝐴 ·e (𝐵 ·e 𝐶)) = (+∞ ·e (𝐵 ·e 𝐶)))
81 xmulcl 12420 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
8225, 47, 81syl2anc 579 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐵 ·e 𝐶) ∈ ℝ*)
83 xmulgt0 12430 . . . . . 6 (((𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 < (𝐵 ·e 𝐶))
84833adant1 1121 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 < (𝐵 ·e 𝐶))
85 xmulpnf2 12422 . . . . 5 (((𝐵 ·e 𝐶) ∈ ℝ* ∧ 0 < (𝐵 ·e 𝐶)) → (+∞ ·e (𝐵 ·e 𝐶)) = +∞)
8682, 84, 85syl2anc 579 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (+∞ ·e (𝐵 ·e 𝐶)) = +∞)
8780, 86sylan9eqr 2836 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → (𝐴 ·e (𝐵 ·e 𝐶)) = +∞)
8874, 79, 873eqtr4d 2824 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
89 simp1r 1212 . . 3 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 < 𝐴)
90 xmulasslem2 12429 . . 3 ((0 < 𝐴𝐴 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
9189, 90sylan 575 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
92 elxr 12266 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
9324, 92sylib 210 . 2 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
9472, 88, 91, 93mpjao3dan 1505 1 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3o 1070  w3a 1071   = wceq 1601  wcel 2107   class class class wbr 4888  (class class class)co 6924  cc 10272  cr 10273  0cc0 10274   · cmul 10279  +∞cpnf 10410  -∞cmnf 10411  *cxr 10412   < clt 10413   ·e cxmu 12261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-xmul 12264
This theorem is referenced by:  xmulass  12434
  Copyright terms: Public domain W3C validator