MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanabsge Structured version   Visualization version   GIF version

Theorem tanabsge 26413
Description: The tangent function is greater than or equal to its argument in absolute value. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanabsge (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))

Proof of Theorem tanabsge
StepHypRef Expression
1 elioore 13278 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ)
21adantr 480 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
32renegcld 11547 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
41lt0neg1d 11689 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < 0 ↔ 0 < -𝐴))
54biimpa 476 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 < -𝐴)
6 eliooord 13308 . . . . . . . . . . . 12 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝐴𝐴 < (π / 2)))
76simpld 494 . . . . . . . . . . 11 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → -(π / 2) < 𝐴)
87adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -(π / 2) < 𝐴)
9 halfpire 26371 . . . . . . . . . . 11 (π / 2) ∈ ℝ
10 ltnegcon1 11621 . . . . . . . . . . 11 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-(π / 2) < 𝐴 ↔ -𝐴 < (π / 2)))
119, 2, 10sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (-(π / 2) < 𝐴 ↔ -𝐴 < (π / 2)))
128, 11mpbid 232 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 < (π / 2))
13 0xr 11162 . . . . . . . . . 10 0 ∈ ℝ*
149rexri 11173 . . . . . . . . . 10 (π / 2) ∈ ℝ*
15 elioo2 13289 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-𝐴 ∈ (0(,)(π / 2)) ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴 ∧ -𝐴 < (π / 2))))
1613, 14, 15mp2an 692 . . . . . . . . 9 (-𝐴 ∈ (0(,)(π / 2)) ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴 ∧ -𝐴 < (π / 2)))
173, 5, 12, 16syl3anbrc 1344 . . . . . . . 8 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ∈ (0(,)(π / 2)))
18 sincosq1sgn 26405 . . . . . . . 8 (-𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘-𝐴) ∧ 0 < (cos‘-𝐴)))
1917, 18syl 17 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (0 < (sin‘-𝐴) ∧ 0 < (cos‘-𝐴)))
2019simprd 495 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 < (cos‘-𝐴))
2120gt0ne0d 11684 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (cos‘-𝐴) ≠ 0)
223, 21retancld 16054 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘-𝐴) ∈ ℝ)
23 tangtx 26412 . . . . 5 (-𝐴 ∈ (0(,)(π / 2)) → -𝐴 < (tan‘-𝐴))
2417, 23syl 17 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 < (tan‘-𝐴))
253, 22, 24ltled 11264 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ≤ (tan‘-𝐴))
26 0re 11117 . . . . . 6 0 ∈ ℝ
27 ltle 11204 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0))
281, 26, 27sylancl 586 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < 0 → 𝐴 ≤ 0))
2928imp 406 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 𝐴 ≤ 0)
302, 29absnidd 15321 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘𝐴) = -𝐴)
311recnd 11143 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ)
3231adantr 480 . . . . . . . 8 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
3332negnegd 11466 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → --𝐴 = 𝐴)
3433fveq2d 6826 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘--𝐴) = (tan‘𝐴))
3532negcld 11462 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ∈ ℂ)
36 tanneg 16057 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ (cos‘-𝐴) ≠ 0) → (tan‘--𝐴) = -(tan‘-𝐴))
3735, 21, 36syl2anc 584 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘--𝐴) = -(tan‘-𝐴))
3834, 37eqtr3d 2766 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘𝐴) = -(tan‘-𝐴))
3938fveq2d 6826 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘(tan‘𝐴)) = (abs‘-(tan‘-𝐴)))
4022recnd 11143 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘-𝐴) ∈ ℂ)
4140absnegd 15359 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘-(tan‘-𝐴)) = (abs‘(tan‘-𝐴)))
42 0red 11118 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 ∈ ℝ)
43 ltle 11204 . . . . . . . 8 ((0 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (0 < -𝐴 → 0 ≤ -𝐴))
4426, 3, 43sylancr 587 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (0 < -𝐴 → 0 ≤ -𝐴))
455, 44mpd 15 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 ≤ -𝐴)
4642, 3, 22, 45, 25letrd 11273 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 ≤ (tan‘-𝐴))
4722, 46absidd 15330 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘(tan‘-𝐴)) = (tan‘-𝐴))
4839, 41, 473eqtrd 2768 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘(tan‘𝐴)) = (tan‘-𝐴))
4925, 30, 483brtr4d 5124 . 2 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
50 abs0 15192 . . . . . 6 (abs‘0) = 0
5150, 26eqeltri 2824 . . . . 5 (abs‘0) ∈ ℝ
5251leidi 11654 . . . 4 (abs‘0) ≤ (abs‘0)
5352a1i 11 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘0) ≤ (abs‘0))
54 simpr 484 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → 𝐴 = 0)
5554fveq2d 6826 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘𝐴) = (abs‘0))
5654fveq2d 6826 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (tan‘𝐴) = (tan‘0))
57 tan0 16060 . . . . 5 (tan‘0) = 0
5856, 57eqtrdi 2780 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (tan‘𝐴) = 0)
5958fveq2d 6826 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘(tan‘𝐴)) = (abs‘0))
6053, 55, 593brtr4d 5124 . 2 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
611adantr 480 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
62 simpr 484 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 < 𝐴)
636simprd 495 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 < (π / 2))
6463adantr 480 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 < (π / 2))
65 elioo2 13289 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2))))
6613, 14, 65mp2an 692 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)))
6761, 62, 64, 66syl3anbrc 1344 . . . . . . . 8 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(π / 2)))
68 sincosq1sgn 26405 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
6967, 68syl 17 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
7069simprd 495 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 < (cos‘𝐴))
7170gt0ne0d 11684 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (cos‘𝐴) ≠ 0)
7261, 71retancld 16054 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (tan‘𝐴) ∈ ℝ)
73 tangtx 26412 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))
7467, 73syl 17 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 < (tan‘𝐴))
7561, 72, 74ltled 11264 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 ≤ (tan‘𝐴))
76 ltle 11204 . . . . . 6 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
7726, 1, 76sylancr 587 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (0 < 𝐴 → 0 ≤ 𝐴))
7877imp 406 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 ≤ 𝐴)
7961, 78absidd 15330 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴)
80 0red 11118 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 ∈ ℝ)
8180, 61, 72, 78, 75letrd 11273 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 ≤ (tan‘𝐴))
8272, 81absidd 15330 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (abs‘(tan‘𝐴)) = (tan‘𝐴))
8375, 79, 823brtr4d 5124 . 2 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
84 lttri4 11200 . . 3 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
851, 26, 84sylancl 586 . 2 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
8649, 60, 83, 85mpjao3dan 1434 1 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  *cxr 11148   < clt 11149  cle 11150  -cneg 11348   / cdiv 11777  2c2 12183  (,)cioo 13248  abscabs 15141  sincsin 15970  cosccos 15971  tanctan 15972  πcpi 15973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by:  logcnlem4  26552
  Copyright terms: Public domain W3C validator