MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanabsge Structured version   Visualization version   GIF version

Theorem tanabsge 25769
Description: The tangent function is greater than or equal to its argument in absolute value. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanabsge (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))

Proof of Theorem tanabsge
StepHypRef Expression
1 elioore 13210 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ)
21adantr 481 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
32renegcld 11503 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
41lt0neg1d 11645 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < 0 ↔ 0 < -𝐴))
54biimpa 477 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 < -𝐴)
6 eliooord 13239 . . . . . . . . . . . 12 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝐴𝐴 < (π / 2)))
76simpld 495 . . . . . . . . . . 11 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → -(π / 2) < 𝐴)
87adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -(π / 2) < 𝐴)
9 halfpire 25727 . . . . . . . . . . 11 (π / 2) ∈ ℝ
10 ltnegcon1 11577 . . . . . . . . . . 11 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-(π / 2) < 𝐴 ↔ -𝐴 < (π / 2)))
119, 2, 10sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (-(π / 2) < 𝐴 ↔ -𝐴 < (π / 2)))
128, 11mpbid 231 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 < (π / 2))
13 0xr 11123 . . . . . . . . . 10 0 ∈ ℝ*
149rexri 11134 . . . . . . . . . 10 (π / 2) ∈ ℝ*
15 elioo2 13221 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-𝐴 ∈ (0(,)(π / 2)) ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴 ∧ -𝐴 < (π / 2))))
1613, 14, 15mp2an 689 . . . . . . . . 9 (-𝐴 ∈ (0(,)(π / 2)) ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴 ∧ -𝐴 < (π / 2)))
173, 5, 12, 16syl3anbrc 1342 . . . . . . . 8 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ∈ (0(,)(π / 2)))
18 sincosq1sgn 25761 . . . . . . . 8 (-𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘-𝐴) ∧ 0 < (cos‘-𝐴)))
1917, 18syl 17 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (0 < (sin‘-𝐴) ∧ 0 < (cos‘-𝐴)))
2019simprd 496 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 < (cos‘-𝐴))
2120gt0ne0d 11640 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (cos‘-𝐴) ≠ 0)
223, 21retancld 15953 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘-𝐴) ∈ ℝ)
23 tangtx 25768 . . . . 5 (-𝐴 ∈ (0(,)(π / 2)) → -𝐴 < (tan‘-𝐴))
2417, 23syl 17 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 < (tan‘-𝐴))
253, 22, 24ltled 11224 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ≤ (tan‘-𝐴))
26 0re 11078 . . . . . 6 0 ∈ ℝ
27 ltle 11164 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0))
281, 26, 27sylancl 586 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < 0 → 𝐴 ≤ 0))
2928imp 407 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 𝐴 ≤ 0)
302, 29absnidd 15224 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘𝐴) = -𝐴)
311recnd 11104 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ)
3231adantr 481 . . . . . . . 8 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
3332negnegd 11424 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → --𝐴 = 𝐴)
3433fveq2d 6829 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘--𝐴) = (tan‘𝐴))
3532negcld 11420 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ∈ ℂ)
36 tanneg 15956 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ (cos‘-𝐴) ≠ 0) → (tan‘--𝐴) = -(tan‘-𝐴))
3735, 21, 36syl2anc 584 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘--𝐴) = -(tan‘-𝐴))
3834, 37eqtr3d 2778 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘𝐴) = -(tan‘-𝐴))
3938fveq2d 6829 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘(tan‘𝐴)) = (abs‘-(tan‘-𝐴)))
4022recnd 11104 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘-𝐴) ∈ ℂ)
4140absnegd 15260 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘-(tan‘-𝐴)) = (abs‘(tan‘-𝐴)))
42 0red 11079 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 ∈ ℝ)
43 ltle 11164 . . . . . . . 8 ((0 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (0 < -𝐴 → 0 ≤ -𝐴))
4426, 3, 43sylancr 587 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (0 < -𝐴 → 0 ≤ -𝐴))
455, 44mpd 15 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 ≤ -𝐴)
4642, 3, 22, 45, 25letrd 11233 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 ≤ (tan‘-𝐴))
4722, 46absidd 15233 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘(tan‘-𝐴)) = (tan‘-𝐴))
4839, 41, 473eqtrd 2780 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘(tan‘𝐴)) = (tan‘-𝐴))
4925, 30, 483brtr4d 5124 . 2 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
50 abs0 15096 . . . . . 6 (abs‘0) = 0
5150, 26eqeltri 2833 . . . . 5 (abs‘0) ∈ ℝ
5251leidi 11610 . . . 4 (abs‘0) ≤ (abs‘0)
5352a1i 11 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘0) ≤ (abs‘0))
54 simpr 485 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → 𝐴 = 0)
5554fveq2d 6829 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘𝐴) = (abs‘0))
5654fveq2d 6829 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (tan‘𝐴) = (tan‘0))
57 tan0 15959 . . . . 5 (tan‘0) = 0
5856, 57eqtrdi 2792 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (tan‘𝐴) = 0)
5958fveq2d 6829 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘(tan‘𝐴)) = (abs‘0))
6053, 55, 593brtr4d 5124 . 2 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
611adantr 481 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
62 simpr 485 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 < 𝐴)
636simprd 496 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 < (π / 2))
6463adantr 481 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 < (π / 2))
65 elioo2 13221 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2))))
6613, 14, 65mp2an 689 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)))
6761, 62, 64, 66syl3anbrc 1342 . . . . . . . 8 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(π / 2)))
68 sincosq1sgn 25761 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
6967, 68syl 17 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
7069simprd 496 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 < (cos‘𝐴))
7170gt0ne0d 11640 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (cos‘𝐴) ≠ 0)
7261, 71retancld 15953 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (tan‘𝐴) ∈ ℝ)
73 tangtx 25768 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))
7467, 73syl 17 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 < (tan‘𝐴))
7561, 72, 74ltled 11224 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 ≤ (tan‘𝐴))
76 ltle 11164 . . . . . 6 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
7726, 1, 76sylancr 587 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (0 < 𝐴 → 0 ≤ 𝐴))
7877imp 407 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 ≤ 𝐴)
7961, 78absidd 15233 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴)
80 0red 11079 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 ∈ ℝ)
8180, 61, 72, 78, 75letrd 11233 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 ≤ (tan‘𝐴))
8272, 81absidd 15233 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (abs‘(tan‘𝐴)) = (tan‘𝐴))
8375, 79, 823brtr4d 5124 . 2 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
84 lttri4 11160 . . 3 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
851, 26, 84sylancl 586 . 2 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
8649, 60, 83, 85mpjao3dan 1430 1 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5092  cfv 6479  (class class class)co 7337  cc 10970  cr 10971  0cc0 10972  *cxr 11109   < clt 11110  cle 11111  -cneg 11307   / cdiv 11733  2c2 12129  (,)cioo 13180  abscabs 15044  sincsin 15872  cosccos 15873  tanctan 15874  πcpi 15875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-pm 8689  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ioo 13184  df-ioc 13185  df-ico 13186  df-icc 13187  df-fz 13341  df-fzo 13484  df-fl 13613  df-seq 13823  df-exp 13884  df-fac 14089  df-bc 14118  df-hash 14146  df-shft 14877  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-ef 15876  df-sin 15878  df-cos 15879  df-tan 15880  df-pi 15881  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-lp 22393  df-perf 22394  df-cn 22484  df-cnp 22485  df-haus 22572  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cncf 24147  df-limc 25136  df-dv 25137
This theorem is referenced by:  logcnlem4  25906
  Copyright terms: Public domain W3C validator