Proof of Theorem tanabsge
Step | Hyp | Ref
| Expression |
1 | | elioore 13109 |
. . . . . 6
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 𝐴 ∈
ℝ) |
2 | 1 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
𝐴 ∈
ℝ) |
3 | 2 | renegcld 11402 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 ∈
ℝ) |
4 | 1 | lt0neg1d 11544 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (𝐴 < 0 ↔
0 < -𝐴)) |
5 | 4 | biimpa 477 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
0 < -𝐴) |
6 | | eliooord 13138 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (-(π / 2) < 𝐴 ∧ 𝐴 < (π / 2))) |
7 | 6 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → -(π / 2) < 𝐴) |
8 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-(π / 2) < 𝐴) |
9 | | halfpire 25621 |
. . . . . . . . . . 11
⊢ (π /
2) ∈ ℝ |
10 | | ltnegcon1 11476 |
. . . . . . . . . . 11
⊢ (((π /
2) ∈ ℝ ∧ 𝐴
∈ ℝ) → (-(π / 2) < 𝐴 ↔ -𝐴 < (π / 2))) |
11 | 9, 2, 10 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(-(π / 2) < 𝐴 ↔
-𝐴 < (π /
2))) |
12 | 8, 11 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 < (π /
2)) |
13 | | 0xr 11022 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
14 | 9 | rexri 11033 |
. . . . . . . . . 10
⊢ (π /
2) ∈ ℝ* |
15 | | elioo2 13120 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ (π / 2) ∈ ℝ*) →
(-𝐴 ∈ (0(,)(π / 2))
↔ (-𝐴 ∈ ℝ
∧ 0 < -𝐴 ∧
-𝐴 < (π /
2)))) |
16 | 13, 14, 15 | mp2an 689 |
. . . . . . . . 9
⊢ (-𝐴 ∈ (0(,)(π / 2)) ↔
(-𝐴 ∈ ℝ ∧ 0
< -𝐴 ∧ -𝐴 < (π /
2))) |
17 | 3, 5, 12, 16 | syl3anbrc 1342 |
. . . . . . . 8
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 ∈ (0(,)(π /
2))) |
18 | | sincosq1sgn 25655 |
. . . . . . . 8
⊢ (-𝐴 ∈ (0(,)(π / 2)) →
(0 < (sin‘-𝐴)
∧ 0 < (cos‘-𝐴))) |
19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(0 < (sin‘-𝐴)
∧ 0 < (cos‘-𝐴))) |
20 | 19 | simprd 496 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
0 < (cos‘-𝐴)) |
21 | 20 | gt0ne0d 11539 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(cos‘-𝐴) ≠
0) |
22 | 3, 21 | retancld 15854 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(tan‘-𝐴) ∈
ℝ) |
23 | | tangtx 25662 |
. . . . 5
⊢ (-𝐴 ∈ (0(,)(π / 2)) →
-𝐴 < (tan‘-𝐴)) |
24 | 17, 23 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 < (tan‘-𝐴)) |
25 | 3, 22, 24 | ltled 11123 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 ≤ (tan‘-𝐴)) |
26 | | 0re 10977 |
. . . . . 6
⊢ 0 ∈
ℝ |
27 | | ltle 11063 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐴 < 0
→ 𝐴 ≤
0)) |
28 | 1, 26, 27 | sylancl 586 |
. . . . 5
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (𝐴 < 0 →
𝐴 ≤ 0)) |
29 | 28 | imp 407 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
𝐴 ≤ 0) |
30 | 2, 29 | absnidd 15125 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘𝐴) = -𝐴) |
31 | 1 | recnd 11003 |
. . . . . . . . 9
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 𝐴 ∈
ℂ) |
32 | 31 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
𝐴 ∈
ℂ) |
33 | 32 | negnegd 11323 |
. . . . . . 7
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
--𝐴 = 𝐴) |
34 | 33 | fveq2d 6778 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(tan‘--𝐴) =
(tan‘𝐴)) |
35 | 32 | negcld 11319 |
. . . . . . 7
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 ∈
ℂ) |
36 | | tanneg 15857 |
. . . . . . 7
⊢ ((-𝐴 ∈ ℂ ∧
(cos‘-𝐴) ≠ 0)
→ (tan‘--𝐴) =
-(tan‘-𝐴)) |
37 | 35, 21, 36 | syl2anc 584 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(tan‘--𝐴) =
-(tan‘-𝐴)) |
38 | 34, 37 | eqtr3d 2780 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(tan‘𝐴) =
-(tan‘-𝐴)) |
39 | 38 | fveq2d 6778 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘(tan‘𝐴)) =
(abs‘-(tan‘-𝐴))) |
40 | 22 | recnd 11003 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(tan‘-𝐴) ∈
ℂ) |
41 | 40 | absnegd 15161 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘-(tan‘-𝐴))
= (abs‘(tan‘-𝐴))) |
42 | | 0red 10978 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
0 ∈ ℝ) |
43 | | ltle 11063 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ -𝐴
∈ ℝ) → (0 < -𝐴 → 0 ≤ -𝐴)) |
44 | 26, 3, 43 | sylancr 587 |
. . . . . . 7
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(0 < -𝐴 → 0 ≤
-𝐴)) |
45 | 5, 44 | mpd 15 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
0 ≤ -𝐴) |
46 | 42, 3, 22, 45, 25 | letrd 11132 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
0 ≤ (tan‘-𝐴)) |
47 | 22, 46 | absidd 15134 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘(tan‘-𝐴))
= (tan‘-𝐴)) |
48 | 39, 41, 47 | 3eqtrd 2782 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘(tan‘𝐴)) =
(tan‘-𝐴)) |
49 | 25, 30, 48 | 3brtr4d 5106 |
. 2
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘𝐴) ≤
(abs‘(tan‘𝐴))) |
50 | | abs0 14997 |
. . . . . 6
⊢
(abs‘0) = 0 |
51 | 50, 26 | eqeltri 2835 |
. . . . 5
⊢
(abs‘0) ∈ ℝ |
52 | 51 | leidi 11509 |
. . . 4
⊢
(abs‘0) ≤ (abs‘0) |
53 | 52 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(abs‘0) ≤ (abs‘0)) |
54 | | simpr 485 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
𝐴 = 0) |
55 | 54 | fveq2d 6778 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(abs‘𝐴) =
(abs‘0)) |
56 | 54 | fveq2d 6778 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(tan‘𝐴) =
(tan‘0)) |
57 | | tan0 15860 |
. . . . 5
⊢
(tan‘0) = 0 |
58 | 56, 57 | eqtrdi 2794 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(tan‘𝐴) =
0) |
59 | 58 | fveq2d 6778 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(abs‘(tan‘𝐴)) =
(abs‘0)) |
60 | 53, 55, 59 | 3brtr4d 5106 |
. 2
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(abs‘𝐴) ≤
(abs‘(tan‘𝐴))) |
61 | 1 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
𝐴 ∈
ℝ) |
62 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
0 < 𝐴) |
63 | 6 | simprd 496 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 𝐴 < (π /
2)) |
64 | 63 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
𝐴 < (π /
2)) |
65 | | elioo2 13120 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ (π / 2) ∈ ℝ*) →
(𝐴 ∈ (0(,)(π / 2))
↔ (𝐴 ∈ ℝ
∧ 0 < 𝐴 ∧ 𝐴 < (π /
2)))) |
66 | 13, 14, 65 | mp2an 689 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,)(π / 2)) ↔
(𝐴 ∈ ℝ ∧ 0
< 𝐴 ∧ 𝐴 < (π /
2))) |
67 | 61, 62, 64, 66 | syl3anbrc 1342 |
. . . . . . . 8
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
𝐴 ∈ (0(,)(π /
2))) |
68 | | sincosq1sgn 25655 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,)(π / 2)) →
(0 < (sin‘𝐴) ∧
0 < (cos‘𝐴))) |
69 | 67, 68 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(0 < (sin‘𝐴) ∧
0 < (cos‘𝐴))) |
70 | 69 | simprd 496 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
0 < (cos‘𝐴)) |
71 | 70 | gt0ne0d 11539 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(cos‘𝐴) ≠
0) |
72 | 61, 71 | retancld 15854 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(tan‘𝐴) ∈
ℝ) |
73 | | tangtx 25662 |
. . . . 5
⊢ (𝐴 ∈ (0(,)(π / 2)) →
𝐴 < (tan‘𝐴)) |
74 | 67, 73 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
𝐴 < (tan‘𝐴)) |
75 | 61, 72, 74 | ltled 11123 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
𝐴 ≤ (tan‘𝐴)) |
76 | | ltle 11063 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) |
77 | 26, 1, 76 | sylancr 587 |
. . . . 5
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (0 < 𝐴 →
0 ≤ 𝐴)) |
78 | 77 | imp 407 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
0 ≤ 𝐴) |
79 | 61, 78 | absidd 15134 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(abs‘𝐴) = 𝐴) |
80 | | 0red 10978 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
0 ∈ ℝ) |
81 | 80, 61, 72, 78, 75 | letrd 11132 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
0 ≤ (tan‘𝐴)) |
82 | 72, 81 | absidd 15134 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(abs‘(tan‘𝐴)) =
(tan‘𝐴)) |
83 | 75, 79, 82 | 3brtr4d 5106 |
. 2
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(abs‘𝐴) ≤
(abs‘(tan‘𝐴))) |
84 | | lttri4 11059 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐴 < 0
∨ 𝐴 = 0 ∨ 0 <
𝐴)) |
85 | 1, 26, 84 | sylancl 586 |
. 2
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (𝐴 < 0 ∨
𝐴 = 0 ∨ 0 < 𝐴)) |
86 | 49, 60, 83, 85 | mpjao3dan 1430 |
1
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (abs‘𝐴)
≤ (abs‘(tan‘𝐴))) |