MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanabsge Structured version   Visualization version   GIF version

Theorem tanabsge 24478
Description: The tangent function is greater than or equal to its argument in absolute value. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanabsge (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))

Proof of Theorem tanabsge
StepHypRef Expression
1 elioore 12409 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ)
21adantr 466 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
32renegcld 10658 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
41lt0neg1d 10798 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < 0 ↔ 0 < -𝐴))
54biimpa 462 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 < -𝐴)
6 eliooord 12437 . . . . . . . . . . . 12 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝐴𝐴 < (π / 2)))
76simpld 476 . . . . . . . . . . 11 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → -(π / 2) < 𝐴)
87adantr 466 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -(π / 2) < 𝐴)
9 halfpire 24436 . . . . . . . . . . 11 (π / 2) ∈ ℝ
10 ltnegcon1 10730 . . . . . . . . . . 11 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-(π / 2) < 𝐴 ↔ -𝐴 < (π / 2)))
119, 2, 10sylancr 567 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (-(π / 2) < 𝐴 ↔ -𝐴 < (π / 2)))
128, 11mpbid 222 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 < (π / 2))
13 0xr 10287 . . . . . . . . . 10 0 ∈ ℝ*
149rexri 10298 . . . . . . . . . 10 (π / 2) ∈ ℝ*
15 elioo2 12420 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-𝐴 ∈ (0(,)(π / 2)) ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴 ∧ -𝐴 < (π / 2))))
1613, 14, 15mp2an 664 . . . . . . . . 9 (-𝐴 ∈ (0(,)(π / 2)) ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴 ∧ -𝐴 < (π / 2)))
173, 5, 12, 16syl3anbrc 1427 . . . . . . . 8 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ∈ (0(,)(π / 2)))
18 sincosq1sgn 24470 . . . . . . . 8 (-𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘-𝐴) ∧ 0 < (cos‘-𝐴)))
1917, 18syl 17 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (0 < (sin‘-𝐴) ∧ 0 < (cos‘-𝐴)))
2019simprd 477 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 < (cos‘-𝐴))
2120gt0ne0d 10793 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (cos‘-𝐴) ≠ 0)
223, 21retancld 15080 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘-𝐴) ∈ ℝ)
23 tangtx 24477 . . . . 5 (-𝐴 ∈ (0(,)(π / 2)) → -𝐴 < (tan‘-𝐴))
2417, 23syl 17 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 < (tan‘-𝐴))
253, 22, 24ltled 10386 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ≤ (tan‘-𝐴))
26 0re 10241 . . . . . 6 0 ∈ ℝ
27 ltle 10327 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0))
281, 26, 27sylancl 566 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < 0 → 𝐴 ≤ 0))
2928imp 393 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 𝐴 ≤ 0)
302, 29absnidd 14359 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘𝐴) = -𝐴)
311recnd 10269 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ)
3231adantr 466 . . . . . . . 8 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
3332negnegd 10584 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → --𝐴 = 𝐴)
3433fveq2d 6336 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘--𝐴) = (tan‘𝐴))
3532negcld 10580 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → -𝐴 ∈ ℂ)
36 tanneg 15083 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ (cos‘-𝐴) ≠ 0) → (tan‘--𝐴) = -(tan‘-𝐴))
3735, 21, 36syl2anc 565 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘--𝐴) = -(tan‘-𝐴))
3834, 37eqtr3d 2806 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘𝐴) = -(tan‘-𝐴))
3938fveq2d 6336 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘(tan‘𝐴)) = (abs‘-(tan‘-𝐴)))
4022recnd 10269 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (tan‘-𝐴) ∈ ℂ)
4140absnegd 14395 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘-(tan‘-𝐴)) = (abs‘(tan‘-𝐴)))
42 0red 10242 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 ∈ ℝ)
43 ltle 10327 . . . . . . . 8 ((0 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (0 < -𝐴 → 0 ≤ -𝐴))
4426, 3, 43sylancr 567 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (0 < -𝐴 → 0 ≤ -𝐴))
455, 44mpd 15 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 ≤ -𝐴)
4642, 3, 22, 45, 25letrd 10395 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → 0 ≤ (tan‘-𝐴))
4722, 46absidd 14368 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘(tan‘-𝐴)) = (tan‘-𝐴))
4839, 41, 473eqtrd 2808 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘(tan‘𝐴)) = (tan‘-𝐴))
4925, 30, 483brtr4d 4816 . 2 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 < 0) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
50 abs0 14232 . . . . . 6 (abs‘0) = 0
5150, 26eqeltri 2845 . . . . 5 (abs‘0) ∈ ℝ
5251leidi 10763 . . . 4 (abs‘0) ≤ (abs‘0)
5352a1i 11 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘0) ≤ (abs‘0))
54 simpr 471 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → 𝐴 = 0)
5554fveq2d 6336 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘𝐴) = (abs‘0))
5654fveq2d 6336 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (tan‘𝐴) = (tan‘0))
57 tan0 15086 . . . . 5 (tan‘0) = 0
5856, 57syl6eq 2820 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (tan‘𝐴) = 0)
5958fveq2d 6336 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘(tan‘𝐴)) = (abs‘0))
6053, 55, 593brtr4d 4816 . 2 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐴 = 0) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
611adantr 466 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
62 simpr 471 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 < 𝐴)
636simprd 477 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 < (π / 2))
6463adantr 466 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 < (π / 2))
65 elioo2 12420 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2))))
6613, 14, 65mp2an 664 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)))
6761, 62, 64, 66syl3anbrc 1427 . . . . . . . 8 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(π / 2)))
68 sincosq1sgn 24470 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
6967, 68syl 17 . . . . . . 7 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
7069simprd 477 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 < (cos‘𝐴))
7170gt0ne0d 10793 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (cos‘𝐴) ≠ 0)
7261, 71retancld 15080 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (tan‘𝐴) ∈ ℝ)
73 tangtx 24477 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))
7467, 73syl 17 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 < (tan‘𝐴))
7561, 72, 74ltled 10386 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 𝐴 ≤ (tan‘𝐴))
76 ltle 10327 . . . . . 6 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
7726, 1, 76sylancr 567 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (0 < 𝐴 → 0 ≤ 𝐴))
7877imp 393 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 ≤ 𝐴)
7961, 78absidd 14368 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴)
80 0red 10242 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 ∈ ℝ)
8180, 61, 72, 78, 75letrd 10395 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → 0 ≤ (tan‘𝐴))
8272, 81absidd 14368 . . 3 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (abs‘(tan‘𝐴)) = (tan‘𝐴))
8375, 79, 823brtr4d 4816 . 2 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 0 < 𝐴) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
84 lttri4 10323 . . 3 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
851, 26, 84sylancl 566 . 2 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
8649, 60, 83, 85mpjao3dan 1542 1 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3o 1069  w3a 1070   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137  *cxr 10274   < clt 10275  cle 10276  -cneg 10468   / cdiv 10885  2c2 11271  (,)cioo 12379  abscabs 14181  sincsin 14999  cosccos 15000  tanctan 15001  πcpi 15002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-shft 14014  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-sum 14624  df-ef 15003  df-sin 15005  df-cos 15006  df-tan 15007  df-pi 15008  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cncf 22900  df-limc 23849  df-dv 23850
This theorem is referenced by:  logcnlem4  24611
  Copyright terms: Public domain W3C validator