Proof of Theorem tanabsge
| Step | Hyp | Ref
| Expression |
| 1 | | elioore 13417 |
. . . . . 6
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 𝐴 ∈
ℝ) |
| 2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
𝐴 ∈
ℝ) |
| 3 | 2 | renegcld 11690 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 ∈
ℝ) |
| 4 | 1 | lt0neg1d 11832 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (𝐴 < 0 ↔
0 < -𝐴)) |
| 5 | 4 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
0 < -𝐴) |
| 6 | | eliooord 13446 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (-(π / 2) < 𝐴 ∧ 𝐴 < (π / 2))) |
| 7 | 6 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → -(π / 2) < 𝐴) |
| 8 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-(π / 2) < 𝐴) |
| 9 | | halfpire 26506 |
. . . . . . . . . . 11
⊢ (π /
2) ∈ ℝ |
| 10 | | ltnegcon1 11764 |
. . . . . . . . . . 11
⊢ (((π /
2) ∈ ℝ ∧ 𝐴
∈ ℝ) → (-(π / 2) < 𝐴 ↔ -𝐴 < (π / 2))) |
| 11 | 9, 2, 10 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(-(π / 2) < 𝐴 ↔
-𝐴 < (π /
2))) |
| 12 | 8, 11 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 < (π /
2)) |
| 13 | | 0xr 11308 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
| 14 | 9 | rexri 11319 |
. . . . . . . . . 10
⊢ (π /
2) ∈ ℝ* |
| 15 | | elioo2 13428 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ (π / 2) ∈ ℝ*) →
(-𝐴 ∈ (0(,)(π / 2))
↔ (-𝐴 ∈ ℝ
∧ 0 < -𝐴 ∧
-𝐴 < (π /
2)))) |
| 16 | 13, 14, 15 | mp2an 692 |
. . . . . . . . 9
⊢ (-𝐴 ∈ (0(,)(π / 2)) ↔
(-𝐴 ∈ ℝ ∧ 0
< -𝐴 ∧ -𝐴 < (π /
2))) |
| 17 | 3, 5, 12, 16 | syl3anbrc 1344 |
. . . . . . . 8
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 ∈ (0(,)(π /
2))) |
| 18 | | sincosq1sgn 26540 |
. . . . . . . 8
⊢ (-𝐴 ∈ (0(,)(π / 2)) →
(0 < (sin‘-𝐴)
∧ 0 < (cos‘-𝐴))) |
| 19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(0 < (sin‘-𝐴)
∧ 0 < (cos‘-𝐴))) |
| 20 | 19 | simprd 495 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
0 < (cos‘-𝐴)) |
| 21 | 20 | gt0ne0d 11827 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(cos‘-𝐴) ≠
0) |
| 22 | 3, 21 | retancld 16181 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(tan‘-𝐴) ∈
ℝ) |
| 23 | | tangtx 26547 |
. . . . 5
⊢ (-𝐴 ∈ (0(,)(π / 2)) →
-𝐴 < (tan‘-𝐴)) |
| 24 | 17, 23 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 < (tan‘-𝐴)) |
| 25 | 3, 22, 24 | ltled 11409 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 ≤ (tan‘-𝐴)) |
| 26 | | 0re 11263 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 27 | | ltle 11349 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐴 < 0
→ 𝐴 ≤
0)) |
| 28 | 1, 26, 27 | sylancl 586 |
. . . . 5
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (𝐴 < 0 →
𝐴 ≤ 0)) |
| 29 | 28 | imp 406 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
𝐴 ≤ 0) |
| 30 | 2, 29 | absnidd 15452 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘𝐴) = -𝐴) |
| 31 | 1 | recnd 11289 |
. . . . . . . . 9
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 𝐴 ∈
ℂ) |
| 32 | 31 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
𝐴 ∈
ℂ) |
| 33 | 32 | negnegd 11611 |
. . . . . . 7
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
--𝐴 = 𝐴) |
| 34 | 33 | fveq2d 6910 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(tan‘--𝐴) =
(tan‘𝐴)) |
| 35 | 32 | negcld 11607 |
. . . . . . 7
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
-𝐴 ∈
ℂ) |
| 36 | | tanneg 16184 |
. . . . . . 7
⊢ ((-𝐴 ∈ ℂ ∧
(cos‘-𝐴) ≠ 0)
→ (tan‘--𝐴) =
-(tan‘-𝐴)) |
| 37 | 35, 21, 36 | syl2anc 584 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(tan‘--𝐴) =
-(tan‘-𝐴)) |
| 38 | 34, 37 | eqtr3d 2779 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(tan‘𝐴) =
-(tan‘-𝐴)) |
| 39 | 38 | fveq2d 6910 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘(tan‘𝐴)) =
(abs‘-(tan‘-𝐴))) |
| 40 | 22 | recnd 11289 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(tan‘-𝐴) ∈
ℂ) |
| 41 | 40 | absnegd 15488 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘-(tan‘-𝐴))
= (abs‘(tan‘-𝐴))) |
| 42 | | 0red 11264 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
0 ∈ ℝ) |
| 43 | | ltle 11349 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ -𝐴
∈ ℝ) → (0 < -𝐴 → 0 ≤ -𝐴)) |
| 44 | 26, 3, 43 | sylancr 587 |
. . . . . . 7
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(0 < -𝐴 → 0 ≤
-𝐴)) |
| 45 | 5, 44 | mpd 15 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
0 ≤ -𝐴) |
| 46 | 42, 3, 22, 45, 25 | letrd 11418 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
0 ≤ (tan‘-𝐴)) |
| 47 | 22, 46 | absidd 15461 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘(tan‘-𝐴))
= (tan‘-𝐴)) |
| 48 | 39, 41, 47 | 3eqtrd 2781 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘(tan‘𝐴)) =
(tan‘-𝐴)) |
| 49 | 25, 30, 48 | 3brtr4d 5175 |
. 2
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 < 0) →
(abs‘𝐴) ≤
(abs‘(tan‘𝐴))) |
| 50 | | abs0 15324 |
. . . . . 6
⊢
(abs‘0) = 0 |
| 51 | 50, 26 | eqeltri 2837 |
. . . . 5
⊢
(abs‘0) ∈ ℝ |
| 52 | 51 | leidi 11797 |
. . . 4
⊢
(abs‘0) ≤ (abs‘0) |
| 53 | 52 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(abs‘0) ≤ (abs‘0)) |
| 54 | | simpr 484 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
𝐴 = 0) |
| 55 | 54 | fveq2d 6910 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(abs‘𝐴) =
(abs‘0)) |
| 56 | 54 | fveq2d 6910 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(tan‘𝐴) =
(tan‘0)) |
| 57 | | tan0 16187 |
. . . . 5
⊢
(tan‘0) = 0 |
| 58 | 56, 57 | eqtrdi 2793 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(tan‘𝐴) =
0) |
| 59 | 58 | fveq2d 6910 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(abs‘(tan‘𝐴)) =
(abs‘0)) |
| 60 | 53, 55, 59 | 3brtr4d 5175 |
. 2
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 𝐴 = 0) →
(abs‘𝐴) ≤
(abs‘(tan‘𝐴))) |
| 61 | 1 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
𝐴 ∈
ℝ) |
| 62 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
0 < 𝐴) |
| 63 | 6 | simprd 495 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 𝐴 < (π /
2)) |
| 64 | 63 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
𝐴 < (π /
2)) |
| 65 | | elioo2 13428 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ (π / 2) ∈ ℝ*) →
(𝐴 ∈ (0(,)(π / 2))
↔ (𝐴 ∈ ℝ
∧ 0 < 𝐴 ∧ 𝐴 < (π /
2)))) |
| 66 | 13, 14, 65 | mp2an 692 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,)(π / 2)) ↔
(𝐴 ∈ ℝ ∧ 0
< 𝐴 ∧ 𝐴 < (π /
2))) |
| 67 | 61, 62, 64, 66 | syl3anbrc 1344 |
. . . . . . . 8
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
𝐴 ∈ (0(,)(π /
2))) |
| 68 | | sincosq1sgn 26540 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,)(π / 2)) →
(0 < (sin‘𝐴) ∧
0 < (cos‘𝐴))) |
| 69 | 67, 68 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(0 < (sin‘𝐴) ∧
0 < (cos‘𝐴))) |
| 70 | 69 | simprd 495 |
. . . . . 6
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
0 < (cos‘𝐴)) |
| 71 | 70 | gt0ne0d 11827 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(cos‘𝐴) ≠
0) |
| 72 | 61, 71 | retancld 16181 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(tan‘𝐴) ∈
ℝ) |
| 73 | | tangtx 26547 |
. . . . 5
⊢ (𝐴 ∈ (0(,)(π / 2)) →
𝐴 < (tan‘𝐴)) |
| 74 | 67, 73 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
𝐴 < (tan‘𝐴)) |
| 75 | 61, 72, 74 | ltled 11409 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
𝐴 ≤ (tan‘𝐴)) |
| 76 | | ltle 11349 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 77 | 26, 1, 76 | sylancr 587 |
. . . . 5
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (0 < 𝐴 →
0 ≤ 𝐴)) |
| 78 | 77 | imp 406 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
0 ≤ 𝐴) |
| 79 | 61, 78 | absidd 15461 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(abs‘𝐴) = 𝐴) |
| 80 | | 0red 11264 |
. . . . 5
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
0 ∈ ℝ) |
| 81 | 80, 61, 72, 78, 75 | letrd 11418 |
. . . 4
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
0 ≤ (tan‘𝐴)) |
| 82 | 72, 81 | absidd 15461 |
. . 3
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(abs‘(tan‘𝐴)) =
(tan‘𝐴)) |
| 83 | 75, 79, 82 | 3brtr4d 5175 |
. 2
⊢ ((𝐴 ∈ (-(π / 2)(,)(π /
2)) ∧ 0 < 𝐴) →
(abs‘𝐴) ≤
(abs‘(tan‘𝐴))) |
| 84 | | lttri4 11345 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐴 < 0
∨ 𝐴 = 0 ∨ 0 <
𝐴)) |
| 85 | 1, 26, 84 | sylancl 586 |
. 2
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (𝐴 < 0 ∨
𝐴 = 0 ∨ 0 < 𝐴)) |
| 86 | 49, 60, 83, 85 | mpjao3dan 1434 |
1
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (abs‘𝐴)
≤ (abs‘(tan‘𝐴))) |