MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xleadd1a Structured version   Visualization version   GIF version

Theorem xleadd1a 13238
Description: Extended real version of leadd1 11686; note that the converse implication is not true, unlike the real version (for example 0 < 1 but (1 +𝑒 +∞) ≤ (0 +𝑒 +∞)). (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleadd1a (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))

Proof of Theorem xleadd1a
StepHypRef Expression
1 simplrr 775 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2 simpr 484 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
3 simplrl 774 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ)
4 simpllr 773 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐴𝐵)
51, 2, 3, 4leadd1dd 11832 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))
61, 3rexaddd 13219 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) = (𝐴 + 𝐶))
72, 3rexaddd 13219 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
85, 6, 73brtr4d 5173 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
9 simpl1 1188 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
10 simpl3 1190 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐶 ∈ ℝ*)
11 xaddcl 13224 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
129, 10, 11syl2anc 583 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
1312ad2antrr 723 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
14 pnfge 13116 . . . . . . 7 ((𝐴 +𝑒 𝐶) ∈ ℝ* → (𝐴 +𝑒 𝐶) ≤ +∞)
1513, 14syl 17 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ≤ +∞)
16 oveq1 7412 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
17 rexr 11264 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
18 renemnf 11267 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ≠ -∞)
19 xaddpnf2 13212 . . . . . . . . 9 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (+∞ +𝑒 𝐶) = +∞)
2017, 18, 19syl2anc 583 . . . . . . . 8 (𝐶 ∈ ℝ → (+∞ +𝑒 𝐶) = +∞)
2120ad2antrl 725 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (+∞ +𝑒 𝐶) = +∞)
2216, 21sylan9eqr 2788 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
2315, 22breqtrrd 5169 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
2412adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
2524xrleidd 13137 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶))
26 simplr 766 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐴𝐵)
27 simpr 484 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐵 = -∞)
289adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
29 mnfle 13120 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
3028, 29syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
3127, 30eqbrtrd 5163 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐵𝐴)
32 simpl2 1189 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ*)
33 xrletri3 13139 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
349, 32, 33syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
3534adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
3626, 31, 35mpbir2and 710 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐴 = 𝐵)
3736oveq1d 7420 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) = (𝐵 +𝑒 𝐶))
3825, 37breqtrd 5167 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
3938adantlr 712 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
40 elxr 13102 . . . . . . 7 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
4132, 40sylib 217 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
4241adantr 480 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
438, 23, 39, 42mpjao3dan 1428 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
4443anassrs 467 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
4512adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
4645xrleidd 13137 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶))
47 simplr 766 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐴𝐵)
48 pnfge 13116 . . . . . . . . . 10 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
4932, 48syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ≤ +∞)
5049adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞)
51 simpr 484 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐴 = +∞)
5250, 51breqtrrd 5169 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐵𝐴)
5334adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
5447, 52, 53mpbir2and 710 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐴 = 𝐵)
5554oveq1d 7420 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) = (𝐵 +𝑒 𝐶))
5646, 55breqtrd 5167 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
5756adantlr 712 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
58 oveq1 7412 . . . . 5 (𝐴 = -∞ → (𝐴 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
59 renepnf 11266 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ≠ +∞)
60 xaddmnf2 13214 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ +∞) → (-∞ +𝑒 𝐶) = -∞)
6117, 59, 60syl2anc 583 . . . . . 6 (𝐶 ∈ ℝ → (-∞ +𝑒 𝐶) = -∞)
6261adantl 481 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) → (-∞ +𝑒 𝐶) = -∞)
6358, 62sylan9eqr 2788 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐶) = -∞)
64 xaddcl 13224 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
6532, 10, 64syl2anc 583 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
6665ad2antrr 723 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
67 mnfle 13120 . . . . 5 ((𝐵 +𝑒 𝐶) ∈ ℝ* → -∞ ≤ (𝐵 +𝑒 𝐶))
6866, 67syl 17 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → -∞ ≤ (𝐵 +𝑒 𝐶))
6963, 68eqbrtrd 5163 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
70 elxr 13102 . . . . 5 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
719, 70sylib 217 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7271adantr 480 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7344, 57, 69, 72mpjao3dan 1428 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
7438adantlr 712 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
7512ad2antrr 723 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
7675, 14syl 17 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ≤ +∞)
77 simplr 766 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → 𝐶 = +∞)
7877oveq2d 7421 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 𝐶) = (𝐵 +𝑒 +∞))
7932adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) → 𝐵 ∈ ℝ*)
80 xaddpnf1 13211 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
8179, 80sylan 579 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
8278, 81eqtrd 2766 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 𝐶) = +∞)
8376, 82breqtrrd 5169 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
8474, 83pm2.61dane 3023 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
8556adantlr 712 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
86 simplr 766 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → 𝐶 = -∞)
8786oveq2d 7421 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) = (𝐴 +𝑒 -∞))
889adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) → 𝐴 ∈ ℝ*)
89 xaddmnf1 13213 . . . . . 6 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
9088, 89sylan 579 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
9187, 90eqtrd 2766 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) = -∞)
9265ad2antrr 723 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
9392, 67syl 17 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → -∞ ≤ (𝐵 +𝑒 𝐶))
9491, 93eqbrtrd 5163 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
9585, 94pm2.61dane 3023 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
96 elxr 13102 . . 3 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
9710, 96sylib 217 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
9873, 84, 95, 97mpjao3dan 1428 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wne 2934   class class class wbr 5141  (class class class)co 7405  cr 11111   + caddc 11115  +∞cpnf 11249  -∞cmnf 11250  *cxr 11251  cle 11253   +𝑒 cxad 13096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-xadd 13099
This theorem is referenced by:  xleadd2a  13239  xleadd1  13240  xaddge0  13243  xle2add  13244  imasdsf1olem  24234  xblss2ps  24262  xblss2  24263  stdbdxmet  24379  xrge0omnd  32735  measunl  33744  carsgclctunlem2  33848  xleadd1d  44611
  Copyright terms: Public domain W3C validator