MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xleadd1a Structured version   Visualization version   GIF version

Theorem xleadd1a 13172
Description: Extended real version of leadd1 11623; note that the converse implication is not true, unlike the real version (for example 0 < 1 but (1 +𝑒 +∞) ≤ (0 +𝑒 +∞)). (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleadd1a (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))

Proof of Theorem xleadd1a
StepHypRef Expression
1 simplrr 776 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2 simpr 485 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
3 simplrl 775 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ)
4 simpllr 774 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐴𝐵)
51, 2, 3, 4leadd1dd 11769 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))
61, 3rexaddd 13153 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) = (𝐴 + 𝐶))
72, 3rexaddd 13153 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
85, 6, 73brtr4d 5137 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
9 simpl1 1191 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
10 simpl3 1193 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐶 ∈ ℝ*)
11 xaddcl 13158 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
129, 10, 11syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
1312ad2antrr 724 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
14 pnfge 13051 . . . . . . 7 ((𝐴 +𝑒 𝐶) ∈ ℝ* → (𝐴 +𝑒 𝐶) ≤ +∞)
1513, 14syl 17 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ≤ +∞)
16 oveq1 7364 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
17 rexr 11201 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
18 renemnf 11204 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ≠ -∞)
19 xaddpnf2 13146 . . . . . . . . 9 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (+∞ +𝑒 𝐶) = +∞)
2017, 18, 19syl2anc 584 . . . . . . . 8 (𝐶 ∈ ℝ → (+∞ +𝑒 𝐶) = +∞)
2120ad2antrl 726 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (+∞ +𝑒 𝐶) = +∞)
2216, 21sylan9eqr 2798 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
2315, 22breqtrrd 5133 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
2412adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
2524xrleidd 13071 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶))
26 simplr 767 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐴𝐵)
27 simpr 485 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐵 = -∞)
289adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
29 mnfle 13055 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
3028, 29syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
3127, 30eqbrtrd 5127 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐵𝐴)
32 simpl2 1192 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ*)
33 xrletri3 13073 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
349, 32, 33syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
3534adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
3626, 31, 35mpbir2and 711 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐴 = 𝐵)
3736oveq1d 7372 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) = (𝐵 +𝑒 𝐶))
3825, 37breqtrd 5131 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
3938adantlr 713 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
40 elxr 13037 . . . . . . 7 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
4132, 40sylib 217 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
4241adantr 481 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
438, 23, 39, 42mpjao3dan 1431 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
4443anassrs 468 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
4512adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
4645xrleidd 13071 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶))
47 simplr 767 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐴𝐵)
48 pnfge 13051 . . . . . . . . . 10 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
4932, 48syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ≤ +∞)
5049adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞)
51 simpr 485 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐴 = +∞)
5250, 51breqtrrd 5133 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐵𝐴)
5334adantr 481 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
5447, 52, 53mpbir2and 711 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐴 = 𝐵)
5554oveq1d 7372 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) = (𝐵 +𝑒 𝐶))
5646, 55breqtrd 5131 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
5756adantlr 713 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
58 oveq1 7364 . . . . 5 (𝐴 = -∞ → (𝐴 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
59 renepnf 11203 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ≠ +∞)
60 xaddmnf2 13148 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ +∞) → (-∞ +𝑒 𝐶) = -∞)
6117, 59, 60syl2anc 584 . . . . . 6 (𝐶 ∈ ℝ → (-∞ +𝑒 𝐶) = -∞)
6261adantl 482 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) → (-∞ +𝑒 𝐶) = -∞)
6358, 62sylan9eqr 2798 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐶) = -∞)
64 xaddcl 13158 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
6532, 10, 64syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
6665ad2antrr 724 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
67 mnfle 13055 . . . . 5 ((𝐵 +𝑒 𝐶) ∈ ℝ* → -∞ ≤ (𝐵 +𝑒 𝐶))
6866, 67syl 17 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → -∞ ≤ (𝐵 +𝑒 𝐶))
6963, 68eqbrtrd 5127 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
70 elxr 13037 . . . . 5 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
719, 70sylib 217 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7271adantr 481 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7344, 57, 69, 72mpjao3dan 1431 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
7438adantlr 713 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
7512ad2antrr 724 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
7675, 14syl 17 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ≤ +∞)
77 simplr 767 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → 𝐶 = +∞)
7877oveq2d 7373 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 𝐶) = (𝐵 +𝑒 +∞))
7932adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) → 𝐵 ∈ ℝ*)
80 xaddpnf1 13145 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
8179, 80sylan 580 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
8278, 81eqtrd 2776 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 𝐶) = +∞)
8376, 82breqtrrd 5133 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
8474, 83pm2.61dane 3032 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
8556adantlr 713 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
86 simplr 767 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → 𝐶 = -∞)
8786oveq2d 7373 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) = (𝐴 +𝑒 -∞))
889adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) → 𝐴 ∈ ℝ*)
89 xaddmnf1 13147 . . . . . 6 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
9088, 89sylan 580 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
9187, 90eqtrd 2776 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) = -∞)
9265ad2antrr 724 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
9392, 67syl 17 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → -∞ ≤ (𝐵 +𝑒 𝐶))
9491, 93eqbrtrd 5127 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
9585, 94pm2.61dane 3032 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
96 elxr 13037 . . 3 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
9710, 96sylib 217 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
9873, 84, 95, 97mpjao3dan 1431 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  (class class class)co 7357  cr 11050   + caddc 11054  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188  cle 11190   +𝑒 cxad 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-xadd 13034
This theorem is referenced by:  xleadd2a  13173  xleadd1  13174  xaddge0  13177  xle2add  13178  imasdsf1olem  23726  xblss2ps  23754  xblss2  23755  stdbdxmet  23871  xrge0omnd  31919  measunl  32815  carsgclctunlem2  32919  xleadd1d  43553
  Copyright terms: Public domain W3C validator