MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvxcl Structured version   Visualization version   GIF version

Theorem cvxcl 26923
Description: Closure of a 0-1 linear combination in a convex set. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
cvxcl.1 (𝜑𝐷 ⊆ ℝ)
cvxcl.2 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷)
Assertion
Ref Expression
cvxcl ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
Distinct variable groups:   𝑥,𝑦,𝐷   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)

Proof of Theorem cvxcl
StepHypRef Expression
1 cvxcl.2 . . . . . 6 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷)
21ralrimivva 3175 . . . . 5 (𝜑 → ∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷)
32ad2antrr 726 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷)
4 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋𝐷)
5 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌𝐷)
6 oveq1 7353 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥[,]𝑦) = (𝑋[,]𝑦))
76sseq1d 3966 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥[,]𝑦) ⊆ 𝐷 ↔ (𝑋[,]𝑦) ⊆ 𝐷))
8 oveq2 7354 . . . . . . . 8 (𝑦 = 𝑌 → (𝑋[,]𝑦) = (𝑋[,]𝑌))
98sseq1d 3966 . . . . . . 7 (𝑦 = 𝑌 → ((𝑋[,]𝑦) ⊆ 𝐷 ↔ (𝑋[,]𝑌) ⊆ 𝐷))
107, 9rspc2v 3588 . . . . . 6 ((𝑋𝐷𝑌𝐷) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷))
114, 5, 10syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷))
1211adantr 480 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷))
133, 12mpd 15 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ 𝐷)
14 ax-1cn 11064 . . . . . . . 8 1 ∈ ℂ
15 unitssre 13399 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
16 simpr3 1197 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1))
1715, 16sselid 3932 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℝ)
1817recnd 11140 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
19 nncan 11390 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
2014, 18, 19sylancr 587 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − (1 − 𝑇)) = 𝑇)
2120oveq1d 7361 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − (1 − 𝑇)) · 𝑋) = (𝑇 · 𝑋))
2221oveq1d 7361 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))
2322adantr 480 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))
24 cvxcl.1 . . . . . . . 8 (𝜑𝐷 ⊆ ℝ)
2524adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝐷 ⊆ ℝ)
2625, 4sseldd 3935 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℝ)
2726adantr 480 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ)
2825, 5sseldd 3935 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℝ)
2928adantr 480 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ)
30 simpr 484 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
31 simplr3 1218 . . . . . 6 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑇 ∈ (0[,]1))
32 iirev 24851 . . . . . 6 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
3331, 32syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (1 − 𝑇) ∈ (0[,]1))
34 lincmb01cmp 13395 . . . . 5 (((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌))
3527, 29, 30, 33, 34syl31anc 1375 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌))
3623, 35eqeltrrd 2832 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌))
3713, 36sseldd 3935 . 2 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
38 oveq2 7354 . . . . 5 (𝑋 = 𝑌 → (𝑇 · 𝑋) = (𝑇 · 𝑌))
3938oveq1d 7361 . . . 4 (𝑋 = 𝑌 → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)))
40 pncan3 11368 . . . . . . 7 ((𝑇 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑇 + (1 − 𝑇)) = 1)
4118, 14, 40sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 + (1 − 𝑇)) = 1)
4241oveq1d 7361 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = (1 · 𝑌))
43 1re 11112 . . . . . . . 8 1 ∈ ℝ
44 resubcl 11425 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
4543, 17, 44sylancr 587 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℝ)
4645recnd 11140 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℂ)
4728recnd 11140 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℂ)
4818, 46, 47adddird 11137 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)))
4947mullidd 11130 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 · 𝑌) = 𝑌)
5042, 48, 493eqtr3d 2774 . . . 4 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)) = 𝑌)
5139, 50sylan9eqr 2788 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = 𝑌)
525adantr 480 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → 𝑌𝐷)
5351, 52eqeltrd 2831 . 2 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
542ad2antrr 726 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷)
55 oveq1 7353 . . . . . . . 8 (𝑥 = 𝑌 → (𝑥[,]𝑦) = (𝑌[,]𝑦))
5655sseq1d 3966 . . . . . . 7 (𝑥 = 𝑌 → ((𝑥[,]𝑦) ⊆ 𝐷 ↔ (𝑌[,]𝑦) ⊆ 𝐷))
57 oveq2 7354 . . . . . . . 8 (𝑦 = 𝑋 → (𝑌[,]𝑦) = (𝑌[,]𝑋))
5857sseq1d 3966 . . . . . . 7 (𝑦 = 𝑋 → ((𝑌[,]𝑦) ⊆ 𝐷 ↔ (𝑌[,]𝑋) ⊆ 𝐷))
5956, 58rspc2v 3588 . . . . . 6 ((𝑌𝐷𝑋𝐷) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷))
605, 4, 59syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷))
6160adantr 480 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷))
6254, 61mpd 15 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (𝑌[,]𝑋) ⊆ 𝐷)
6326recnd 11140 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℂ)
6418, 63mulcld 11132 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 · 𝑋) ∈ ℂ)
6546, 47mulcld 11132 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝑌) ∈ ℂ)
6664, 65addcomd 11315 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)))
6766adantr 480 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)))
6828adantr 480 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑌 ∈ ℝ)
6926adantr 480 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑋 ∈ ℝ)
70 simpr 484 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑌 < 𝑋)
71 simplr3 1218 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑇 ∈ (0[,]1))
72 lincmb01cmp 13395 . . . . 5 (((𝑌 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑌 < 𝑋) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) ∈ (𝑌[,]𝑋))
7368, 69, 70, 71, 72syl31anc 1375 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) ∈ (𝑌[,]𝑋))
7467, 73eqeltrd 2831 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑌[,]𝑋))
7562, 74sseldd 3935 . 2 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
7626, 28lttri4d 11254 . 2 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑋 < 𝑌𝑋 = 𝑌𝑌 < 𝑋))
7737, 53, 75, 76mpjao3dan 1434 1 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wss 3902   class class class wbr 5091  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cmin 11344  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-rp 12891  df-icc 13252
This theorem is referenced by:  scvxcvx  26924  jensenlem2  26926  amgmlem  26928
  Copyright terms: Public domain W3C validator