Proof of Theorem cvxcl
Step | Hyp | Ref
| Expression |
1 | | cvxcl.2 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷) |
2 | 1 | ralrimivva 3114 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷) |
3 | 2 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷) |
4 | | simpr1 1192 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑋 ∈ 𝐷) |
5 | | simpr2 1193 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑌 ∈ 𝐷) |
6 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥[,]𝑦) = (𝑋[,]𝑦)) |
7 | 6 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((𝑥[,]𝑦) ⊆ 𝐷 ↔ (𝑋[,]𝑦) ⊆ 𝐷)) |
8 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (𝑋[,]𝑦) = (𝑋[,]𝑌)) |
9 | 8 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → ((𝑋[,]𝑦) ⊆ 𝐷 ↔ (𝑋[,]𝑌) ⊆ 𝐷)) |
10 | 7, 9 | rspc2v 3562 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷)) |
11 | 4, 5, 10 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷)) |
12 | 11 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷)) |
13 | 3, 12 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ 𝐷) |
14 | | ax-1cn 10860 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
15 | | unitssre 13160 |
. . . . . . . . . 10
⊢ (0[,]1)
⊆ ℝ |
16 | | simpr3 1194 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1)) |
17 | 15, 16 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℝ) |
18 | 17 | recnd 10934 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ) |
19 | | nncan 11180 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇) |
20 | 14, 18, 19 | sylancr 586 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 − (1
− 𝑇)) = 𝑇) |
21 | 20 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 − (1
− 𝑇)) · 𝑋) = (𝑇 · 𝑋)) |
22 | 21 | oveq1d 7270 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (((1 − (1
− 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) |
23 | 22 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) |
24 | | cvxcl.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
25 | 24 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝐷 ⊆ ℝ) |
26 | 25, 4 | sseldd 3918 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℝ) |
27 | 26 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ) |
28 | 25, 5 | sseldd 3918 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℝ) |
29 | 28 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ) |
30 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌) |
31 | | simplr3 1215 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑇 ∈ (0[,]1)) |
32 | | iirev 23998 |
. . . . . 6
⊢ (𝑇 ∈ (0[,]1) → (1
− 𝑇) ∈
(0[,]1)) |
33 | 31, 32 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (1 − 𝑇) ∈ (0[,]1)) |
34 | | lincmb01cmp 13156 |
. . . . 5
⊢ (((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1
− 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌)) |
35 | 27, 29, 30, 33, 34 | syl31anc 1371 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌)) |
36 | 23, 35 | eqeltrrd 2840 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌)) |
37 | 13, 36 | sseldd 3918 |
. 2
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) |
38 | | oveq2 7263 |
. . . . 5
⊢ (𝑋 = 𝑌 → (𝑇 · 𝑋) = (𝑇 · 𝑌)) |
39 | 38 | oveq1d 7270 |
. . . 4
⊢ (𝑋 = 𝑌 → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) |
40 | | pncan3 11159 |
. . . . . . 7
⊢ ((𝑇 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑇 + (1
− 𝑇)) =
1) |
41 | 18, 14, 40 | sylancl 585 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 + (1 − 𝑇)) = 1) |
42 | 41 | oveq1d 7270 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = (1 · 𝑌)) |
43 | | 1re 10906 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
44 | | resubcl 11215 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → (1 − 𝑇) ∈ ℝ) |
45 | 43, 17, 44 | sylancr 586 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈
ℝ) |
46 | 45 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈
ℂ) |
47 | 28 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℂ) |
48 | 18, 46, 47 | adddird 10931 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) |
49 | 47 | mulid2d 10924 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 · 𝑌) = 𝑌) |
50 | 42, 48, 49 | 3eqtr3d 2786 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)) = 𝑌) |
51 | 39, 50 | sylan9eqr 2801 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = 𝑌) |
52 | 5 | adantr 480 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → 𝑌 ∈ 𝐷) |
53 | 51, 52 | eqeltrd 2839 |
. 2
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) |
54 | 2 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷) |
55 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑥 = 𝑌 → (𝑥[,]𝑦) = (𝑌[,]𝑦)) |
56 | 55 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑥 = 𝑌 → ((𝑥[,]𝑦) ⊆ 𝐷 ↔ (𝑌[,]𝑦) ⊆ 𝐷)) |
57 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝑌[,]𝑦) = (𝑌[,]𝑋)) |
58 | 57 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → ((𝑌[,]𝑦) ⊆ 𝐷 ↔ (𝑌[,]𝑋) ⊆ 𝐷)) |
59 | 56, 58 | rspc2v 3562 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷)) |
60 | 5, 4, 59 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷)) |
61 | 60 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷)) |
62 | 54, 61 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (𝑌[,]𝑋) ⊆ 𝐷) |
63 | 26 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℂ) |
64 | 18, 63 | mulcld 10926 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 · 𝑋) ∈ ℂ) |
65 | 46, 47 | mulcld 10926 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝑌) ∈ ℂ) |
66 | 64, 65 | addcomd 11107 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋))) |
67 | 66 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋))) |
68 | 28 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑌 ∈ ℝ) |
69 | 26 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑋 ∈ ℝ) |
70 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑌 < 𝑋) |
71 | | simplr3 1215 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑇 ∈ (0[,]1)) |
72 | | lincmb01cmp 13156 |
. . . . 5
⊢ (((𝑌 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑌 < 𝑋) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) ∈ (𝑌[,]𝑋)) |
73 | 68, 69, 70, 71, 72 | syl31anc 1371 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) ∈ (𝑌[,]𝑋)) |
74 | 67, 73 | eqeltrd 2839 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑌[,]𝑋)) |
75 | 62, 74 | sseldd 3918 |
. 2
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) |
76 | 26, 28 | lttri4d 11046 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ∨ 𝑌 < 𝑋)) |
77 | 37, 53, 75, 76 | mpjao3dan 1429 |
1
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) |