MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvxcl Structured version   Visualization version   GIF version

Theorem cvxcl 26952
Description: Closure of a 0-1 linear combination in a convex set. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
cvxcl.1 (𝜑𝐷 ⊆ ℝ)
cvxcl.2 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷)
Assertion
Ref Expression
cvxcl ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
Distinct variable groups:   𝑥,𝑦,𝐷   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)

Proof of Theorem cvxcl
StepHypRef Expression
1 cvxcl.2 . . . . . 6 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷)
21ralrimivva 3188 . . . . 5 (𝜑 → ∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷)
32ad2antrr 726 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷)
4 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋𝐷)
5 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌𝐷)
6 oveq1 7417 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥[,]𝑦) = (𝑋[,]𝑦))
76sseq1d 3995 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥[,]𝑦) ⊆ 𝐷 ↔ (𝑋[,]𝑦) ⊆ 𝐷))
8 oveq2 7418 . . . . . . . 8 (𝑦 = 𝑌 → (𝑋[,]𝑦) = (𝑋[,]𝑌))
98sseq1d 3995 . . . . . . 7 (𝑦 = 𝑌 → ((𝑋[,]𝑦) ⊆ 𝐷 ↔ (𝑋[,]𝑌) ⊆ 𝐷))
107, 9rspc2v 3617 . . . . . 6 ((𝑋𝐷𝑌𝐷) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷))
114, 5, 10syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷))
1211adantr 480 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷))
133, 12mpd 15 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ 𝐷)
14 ax-1cn 11192 . . . . . . . 8 1 ∈ ℂ
15 unitssre 13521 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
16 simpr3 1197 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1))
1715, 16sselid 3961 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℝ)
1817recnd 11268 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
19 nncan 11517 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
2014, 18, 19sylancr 587 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − (1 − 𝑇)) = 𝑇)
2120oveq1d 7425 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − (1 − 𝑇)) · 𝑋) = (𝑇 · 𝑋))
2221oveq1d 7425 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))
2322adantr 480 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))
24 cvxcl.1 . . . . . . . 8 (𝜑𝐷 ⊆ ℝ)
2524adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝐷 ⊆ ℝ)
2625, 4sseldd 3964 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℝ)
2726adantr 480 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ)
2825, 5sseldd 3964 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℝ)
2928adantr 480 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ)
30 simpr 484 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
31 simplr3 1218 . . . . . 6 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑇 ∈ (0[,]1))
32 iirev 24879 . . . . . 6 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
3331, 32syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (1 − 𝑇) ∈ (0[,]1))
34 lincmb01cmp 13517 . . . . 5 (((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌))
3527, 29, 30, 33, 34syl31anc 1375 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌))
3623, 35eqeltrrd 2836 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌))
3713, 36sseldd 3964 . 2 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
38 oveq2 7418 . . . . 5 (𝑋 = 𝑌 → (𝑇 · 𝑋) = (𝑇 · 𝑌))
3938oveq1d 7425 . . . 4 (𝑋 = 𝑌 → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)))
40 pncan3 11495 . . . . . . 7 ((𝑇 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑇 + (1 − 𝑇)) = 1)
4118, 14, 40sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 + (1 − 𝑇)) = 1)
4241oveq1d 7425 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = (1 · 𝑌))
43 1re 11240 . . . . . . . 8 1 ∈ ℝ
44 resubcl 11552 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
4543, 17, 44sylancr 587 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℝ)
4645recnd 11268 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℂ)
4728recnd 11268 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℂ)
4818, 46, 47adddird 11265 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)))
4947mullidd 11258 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 · 𝑌) = 𝑌)
5042, 48, 493eqtr3d 2779 . . . 4 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)) = 𝑌)
5139, 50sylan9eqr 2793 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = 𝑌)
525adantr 480 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → 𝑌𝐷)
5351, 52eqeltrd 2835 . 2 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
542ad2antrr 726 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷)
55 oveq1 7417 . . . . . . . 8 (𝑥 = 𝑌 → (𝑥[,]𝑦) = (𝑌[,]𝑦))
5655sseq1d 3995 . . . . . . 7 (𝑥 = 𝑌 → ((𝑥[,]𝑦) ⊆ 𝐷 ↔ (𝑌[,]𝑦) ⊆ 𝐷))
57 oveq2 7418 . . . . . . . 8 (𝑦 = 𝑋 → (𝑌[,]𝑦) = (𝑌[,]𝑋))
5857sseq1d 3995 . . . . . . 7 (𝑦 = 𝑋 → ((𝑌[,]𝑦) ⊆ 𝐷 ↔ (𝑌[,]𝑋) ⊆ 𝐷))
5956, 58rspc2v 3617 . . . . . 6 ((𝑌𝐷𝑋𝐷) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷))
605, 4, 59syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷))
6160adantr 480 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷))
6254, 61mpd 15 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (𝑌[,]𝑋) ⊆ 𝐷)
6326recnd 11268 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℂ)
6418, 63mulcld 11260 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 · 𝑋) ∈ ℂ)
6546, 47mulcld 11260 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝑌) ∈ ℂ)
6664, 65addcomd 11442 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)))
6766adantr 480 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)))
6828adantr 480 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑌 ∈ ℝ)
6926adantr 480 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑋 ∈ ℝ)
70 simpr 484 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑌 < 𝑋)
71 simplr3 1218 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑇 ∈ (0[,]1))
72 lincmb01cmp 13517 . . . . 5 (((𝑌 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑌 < 𝑋) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) ∈ (𝑌[,]𝑋))
7368, 69, 70, 71, 72syl31anc 1375 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) ∈ (𝑌[,]𝑋))
7467, 73eqeltrd 2835 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑌[,]𝑋))
7562, 74sseldd 3964 . 2 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
7626, 28lttri4d 11381 . 2 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑋 < 𝑌𝑋 = 𝑌𝑌 < 𝑋))
7737, 53, 75, 76mpjao3dan 1434 1 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wss 3931   class class class wbr 5124  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cmin 11471  [,]cicc 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-rp 13014  df-icc 13374
This theorem is referenced by:  scvxcvx  26953  jensenlem2  26955  amgmlem  26957
  Copyright terms: Public domain W3C validator