Proof of Theorem cvxcl
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvxcl.2 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷) | 
| 2 | 1 | ralrimivva 3201 | . . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷) | 
| 3 | 2 | ad2antrr 726 | . . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷) | 
| 4 |  | simpr1 1194 | . . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑋 ∈ 𝐷) | 
| 5 |  | simpr2 1195 | . . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑌 ∈ 𝐷) | 
| 6 |  | oveq1 7439 | . . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥[,]𝑦) = (𝑋[,]𝑦)) | 
| 7 | 6 | sseq1d 4014 | . . . . . . 7
⊢ (𝑥 = 𝑋 → ((𝑥[,]𝑦) ⊆ 𝐷 ↔ (𝑋[,]𝑦) ⊆ 𝐷)) | 
| 8 |  | oveq2 7440 | . . . . . . . 8
⊢ (𝑦 = 𝑌 → (𝑋[,]𝑦) = (𝑋[,]𝑌)) | 
| 9 | 8 | sseq1d 4014 | . . . . . . 7
⊢ (𝑦 = 𝑌 → ((𝑋[,]𝑦) ⊆ 𝐷 ↔ (𝑋[,]𝑌) ⊆ 𝐷)) | 
| 10 | 7, 9 | rspc2v 3632 | . . . . . 6
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷)) | 
| 11 | 4, 5, 10 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷)) | 
| 12 | 11 | adantr 480 | . . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷)) | 
| 13 | 3, 12 | mpd 15 | . . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ 𝐷) | 
| 14 |  | ax-1cn 11214 | . . . . . . . 8
⊢ 1 ∈
ℂ | 
| 15 |  | unitssre 13540 | . . . . . . . . . 10
⊢ (0[,]1)
⊆ ℝ | 
| 16 |  | simpr3 1196 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1)) | 
| 17 | 15, 16 | sselid 3980 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℝ) | 
| 18 | 17 | recnd 11290 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ) | 
| 19 |  | nncan 11539 | . . . . . . . 8
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇) | 
| 20 | 14, 18, 19 | sylancr 587 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 − (1
− 𝑇)) = 𝑇) | 
| 21 | 20 | oveq1d 7447 | . . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 − (1
− 𝑇)) · 𝑋) = (𝑇 · 𝑋)) | 
| 22 | 21 | oveq1d 7447 | . . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (((1 − (1
− 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) | 
| 23 | 22 | adantr 480 | . . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) | 
| 24 |  | cvxcl.1 | . . . . . . . 8
⊢ (𝜑 → 𝐷 ⊆ ℝ) | 
| 25 | 24 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝐷 ⊆ ℝ) | 
| 26 | 25, 4 | sseldd 3983 | . . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℝ) | 
| 27 | 26 | adantr 480 | . . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ) | 
| 28 | 25, 5 | sseldd 3983 | . . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℝ) | 
| 29 | 28 | adantr 480 | . . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ) | 
| 30 |  | simpr 484 | . . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌) | 
| 31 |  | simplr3 1217 | . . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑇 ∈ (0[,]1)) | 
| 32 |  | iirev 24957 | . . . . . 6
⊢ (𝑇 ∈ (0[,]1) → (1
− 𝑇) ∈
(0[,]1)) | 
| 33 | 31, 32 | syl 17 | . . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (1 − 𝑇) ∈ (0[,]1)) | 
| 34 |  | lincmb01cmp 13536 | . . . . 5
⊢ (((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1
− 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌)) | 
| 35 | 27, 29, 30, 33, 34 | syl31anc 1374 | . . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌)) | 
| 36 | 23, 35 | eqeltrrd 2841 | . . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌)) | 
| 37 | 13, 36 | sseldd 3983 | . 2
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) | 
| 38 |  | oveq2 7440 | . . . . 5
⊢ (𝑋 = 𝑌 → (𝑇 · 𝑋) = (𝑇 · 𝑌)) | 
| 39 | 38 | oveq1d 7447 | . . . 4
⊢ (𝑋 = 𝑌 → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) | 
| 40 |  | pncan3 11517 | . . . . . . 7
⊢ ((𝑇 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑇 + (1
− 𝑇)) =
1) | 
| 41 | 18, 14, 40 | sylancl 586 | . . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 + (1 − 𝑇)) = 1) | 
| 42 | 41 | oveq1d 7447 | . . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = (1 · 𝑌)) | 
| 43 |  | 1re 11262 | . . . . . . . 8
⊢ 1 ∈
ℝ | 
| 44 |  | resubcl 11574 | . . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → (1 − 𝑇) ∈ ℝ) | 
| 45 | 43, 17, 44 | sylancr 587 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈
ℝ) | 
| 46 | 45 | recnd 11290 | . . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈
ℂ) | 
| 47 | 28 | recnd 11290 | . . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℂ) | 
| 48 | 18, 46, 47 | adddird 11287 | . . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) | 
| 49 | 47 | mullidd 11280 | . . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 · 𝑌) = 𝑌) | 
| 50 | 42, 48, 49 | 3eqtr3d 2784 | . . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)) = 𝑌) | 
| 51 | 39, 50 | sylan9eqr 2798 | . . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = 𝑌) | 
| 52 | 5 | adantr 480 | . . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → 𝑌 ∈ 𝐷) | 
| 53 | 51, 52 | eqeltrd 2840 | . 2
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) | 
| 54 | 2 | ad2antrr 726 | . . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷) | 
| 55 |  | oveq1 7439 | . . . . . . . 8
⊢ (𝑥 = 𝑌 → (𝑥[,]𝑦) = (𝑌[,]𝑦)) | 
| 56 | 55 | sseq1d 4014 | . . . . . . 7
⊢ (𝑥 = 𝑌 → ((𝑥[,]𝑦) ⊆ 𝐷 ↔ (𝑌[,]𝑦) ⊆ 𝐷)) | 
| 57 |  | oveq2 7440 | . . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝑌[,]𝑦) = (𝑌[,]𝑋)) | 
| 58 | 57 | sseq1d 4014 | . . . . . . 7
⊢ (𝑦 = 𝑋 → ((𝑌[,]𝑦) ⊆ 𝐷 ↔ (𝑌[,]𝑋) ⊆ 𝐷)) | 
| 59 | 56, 58 | rspc2v 3632 | . . . . . 6
⊢ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷)) | 
| 60 | 5, 4, 59 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷)) | 
| 61 | 60 | adantr 480 | . . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷)) | 
| 62 | 54, 61 | mpd 15 | . . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (𝑌[,]𝑋) ⊆ 𝐷) | 
| 63 | 26 | recnd 11290 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℂ) | 
| 64 | 18, 63 | mulcld 11282 | . . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 · 𝑋) ∈ ℂ) | 
| 65 | 46, 47 | mulcld 11282 | . . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝑌) ∈ ℂ) | 
| 66 | 64, 65 | addcomd 11464 | . . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋))) | 
| 67 | 66 | adantr 480 | . . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋))) | 
| 68 | 28 | adantr 480 | . . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑌 ∈ ℝ) | 
| 69 | 26 | adantr 480 | . . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑋 ∈ ℝ) | 
| 70 |  | simpr 484 | . . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑌 < 𝑋) | 
| 71 |  | simplr3 1217 | . . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑇 ∈ (0[,]1)) | 
| 72 |  | lincmb01cmp 13536 | . . . . 5
⊢ (((𝑌 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑌 < 𝑋) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) ∈ (𝑌[,]𝑋)) | 
| 73 | 68, 69, 70, 71, 72 | syl31anc 1374 | . . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) ∈ (𝑌[,]𝑋)) | 
| 74 | 67, 73 | eqeltrd 2840 | . . 3
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑌[,]𝑋)) | 
| 75 | 62, 74 | sseldd 3983 | . 2
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) | 
| 76 | 26, 28 | lttri4d 11403 | . 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ∨ 𝑌 < 𝑋)) | 
| 77 | 37, 53, 75, 76 | mpjao3dan 1433 | 1
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) |