MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvivth Structured version   Visualization version   GIF version

Theorem dvivth 24616
Description: Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc 24065 does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvivth.1 (𝜑𝑀 ∈ (𝐴(,)𝐵))
dvivth.2 (𝜑𝑁 ∈ (𝐴(,)𝐵))
dvivth.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
dvivth.4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
Assertion
Ref Expression
dvivth (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))

Proof of Theorem dvivth
Dummy variables 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvivth.1 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝐴(,)𝐵))
21adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 ∈ (𝐴(,)𝐵))
3 dvivth.2 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝐴(,)𝐵))
43adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 ∈ (𝐴(,)𝐵))
5 dvivth.3 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
6 cncff 23501 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
75, 6syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
87ffvelrnda 6832 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℝ)
98renegcld 11060 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → -(𝐹𝑤) ∈ ℝ)
109fmpttd 6860 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ)
11 ax-resscn 10587 . . . . . . . . . . . 12 ℝ ⊆ ℂ
12 ssid 3940 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
13 cncfss 23507 . . . . . . . . . . . . . . 15 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
1411, 12, 13mp2an 691 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)
1514, 5sseldi 3916 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
16 eqid 2801 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))
1716negfcncf 23531 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
1815, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
19 cncffvrn 23506 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ))
2011, 18, 19sylancr 590 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ))
2110, 20mpbird 260 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
2221adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
23 reelprrecn 10622 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
2423a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ℝ ∈ {ℝ, ℂ})
257adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
2625ffvelrnda 6832 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℝ)
2726recnd 10662 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℂ)
28 fvexd 6664 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑤) ∈ V)
2925feqmptd 6712 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤)))
3029oveq2d 7155 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) = (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤))))
31 ioossre 12790 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ ℝ
32 dvfre 24557 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
337, 31, 32sylancl 589 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
34 dvivth.4 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
3534feq2d 6477 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
3633, 35mpbid 235 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
3736adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
3837feqmptd 6712 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑤)))
3930, 38eqtr3d 2838 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑤)))
4024, 27, 28, 39dvmptneg 24572 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
4140dmeqd 5742 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
42 dmmptg 6067 . . . . . . . . . . 11 (∀𝑤 ∈ (𝐴(,)𝐵)-((ℝ D 𝐹)‘𝑤) ∈ V → dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝐴(,)𝐵))
43 negex 10877 . . . . . . . . . . . 12 -((ℝ D 𝐹)‘𝑤) ∈ V
4443a1i 11 . . . . . . . . . . 11 (𝑤 ∈ (𝐴(,)𝐵) → -((ℝ D 𝐹)‘𝑤) ∈ V)
4542, 44mprg 3123 . . . . . . . . . 10 dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝐴(,)𝐵)
4641, 45eqtrdi 2852 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = (𝐴(,)𝐵))
47 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 < 𝑁)
48 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))
4936, 1ffvelrnd 6833 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
5049adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
513, 34eleqtrrd 2896 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ dom (ℝ D 𝐹))
5233, 51ffvelrnd 6833 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
5352adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
54 iccssre 12811 . . . . . . . . . . . . . . 15 ((((ℝ D 𝐹)‘𝑀) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ∈ ℝ) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5549, 52, 54syl2anc 587 . . . . . . . . . . . . . 14 (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5655adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5756, 48sseldd 3919 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ℝ)
58 iccneg 12854 . . . . . . . . . . . 12 ((((ℝ D 𝐹)‘𝑀) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ↔ -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀))))
5950, 53, 57, 58syl3anc 1368 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ↔ -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀))))
6048, 59mpbid 235 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀)))
6140fveq1d 6651 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁) = ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁))
62 fveq2 6649 . . . . . . . . . . . . . . 15 (𝑤 = 𝑁 → ((ℝ D 𝐹)‘𝑤) = ((ℝ D 𝐹)‘𝑁))
6362negeqd 10873 . . . . . . . . . . . . . 14 (𝑤 = 𝑁 → -((ℝ D 𝐹)‘𝑤) = -((ℝ D 𝐹)‘𝑁))
64 eqid 2801 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))
65 negex 10877 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑁) ∈ V
6663, 64, 65fvmpt 6749 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐴(,)𝐵) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
674, 66syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
6861, 67eqtrd 2836 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
6940fveq1d 6651 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀) = ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀))
70 fveq2 6649 . . . . . . . . . . . . . . 15 (𝑤 = 𝑀 → ((ℝ D 𝐹)‘𝑤) = ((ℝ D 𝐹)‘𝑀))
7170negeqd 10873 . . . . . . . . . . . . . 14 (𝑤 = 𝑀 → -((ℝ D 𝐹)‘𝑤) = -((ℝ D 𝐹)‘𝑀))
72 negex 10877 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑀) ∈ V
7371, 64, 72fvmpt 6749 . . . . . . . . . . . . 13 (𝑀 ∈ (𝐴(,)𝐵) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
742, 73syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
7569, 74eqtrd 2836 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
7668, 75oveq12d 7157 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁)[,]((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀)) = (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀)))
7760, 76eleqtrrd 2896 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ (((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁)[,]((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀)))
78 eqid 2801 . . . . . . . . 9 (𝑦 ∈ (𝐴(,)𝐵) ↦ (((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))‘𝑦) − (-𝑥 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))‘𝑦) − (-𝑥 · 𝑦)))
792, 4, 22, 46, 47, 77, 78dvivthlem2 24615 . . . . . . . 8 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ ran (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))))
8040rneqd 5776 . . . . . . . 8 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ran (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
8179, 80eleqtrd 2895 . . . . . . 7 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
82 negex 10877 . . . . . . . 8 -𝑥 ∈ V
8364elrnmpt 5796 . . . . . . . 8 (-𝑥 ∈ V → (-𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤)))
8482, 83ax-mp 5 . . . . . . 7 (-𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤))
8581, 84sylib 221 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤))
8657recnd 10662 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ℂ)
8786adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
8824, 27, 28, 39dvmptcl 24565 . . . . . . . . 9 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑤) ∈ ℂ)
8987, 88neg11ad 10986 . . . . . . . 8 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ 𝑥 = ((ℝ D 𝐹)‘𝑤)))
90 eqcom 2808 . . . . . . . 8 (𝑥 = ((ℝ D 𝐹)‘𝑤) ↔ ((ℝ D 𝐹)‘𝑤) = 𝑥)
9189, 90syl6bb 290 . . . . . . 7 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ ((ℝ D 𝐹)‘𝑤) = 𝑥))
9291rexbidva 3258 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9385, 92mpbid 235 . . . . 5 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥)
9437ffnd 6492 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
95 fvelrnb 6705 . . . . . 6 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9694, 95syl 17 . . . . 5 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9793, 96mpbird 260 . . . 4 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ran (ℝ D 𝐹))
9897expr 460 . . 3 ((𝜑𝑀 < 𝑁) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) → 𝑥 ∈ ran (ℝ D 𝐹)))
9998ssrdv 3924 . 2 ((𝜑𝑀 < 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
100 fveq2 6649 . . . . 5 (𝑀 = 𝑁 → ((ℝ D 𝐹)‘𝑀) = ((ℝ D 𝐹)‘𝑁))
101100oveq1d 7154 . . . 4 (𝑀 = 𝑁 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) = (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)))
10252rexrd 10684 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ*)
103 iccid 12775 . . . . 5 (((ℝ D 𝐹)‘𝑁) ∈ ℝ* → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
104102, 103syl 17 . . . 4 (𝜑 → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
105101, 104sylan9eqr 2858 . . 3 ((𝜑𝑀 = 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
10633ffnd 6492 . . . . . 6 (𝜑 → (ℝ D 𝐹) Fn dom (ℝ D 𝐹))
107 fnfvelrn 6829 . . . . . 6 (((ℝ D 𝐹) Fn dom (ℝ D 𝐹) ∧ 𝑁 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑁) ∈ ran (ℝ D 𝐹))
108106, 51, 107syl2anc 587 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ran (ℝ D 𝐹))
109108snssd 4705 . . . 4 (𝜑 → {((ℝ D 𝐹)‘𝑁)} ⊆ ran (ℝ D 𝐹))
110109adantr 484 . . 3 ((𝜑𝑀 = 𝑁) → {((ℝ D 𝐹)‘𝑁)} ⊆ ran (ℝ D 𝐹))
111105, 110eqsstrd 3956 . 2 ((𝜑𝑀 = 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
1123adantr 484 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 ∈ (𝐴(,)𝐵))
1131adantr 484 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 ∈ (𝐴(,)𝐵))
1145adantr 484 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
11534adantr 484 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
116 simprl 770 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 < 𝑀)
117 simprr 772 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))
118 eqid 2801 . . . . 5 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝑥 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝑥 · 𝑦)))
119112, 113, 114, 115, 116, 117, 118dvivthlem2 24615 . . . 4 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ran (ℝ D 𝐹))
120119expr 460 . . 3 ((𝜑𝑁 < 𝑀) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) → 𝑥 ∈ ran (ℝ D 𝐹)))
121120ssrdv 3924 . 2 ((𝜑𝑁 < 𝑀) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
12231, 1sseldi 3916 . . 3 (𝜑𝑀 ∈ ℝ)
12331, 3sseldi 3916 . . 3 (𝜑𝑁 ∈ ℝ)
124122, 123lttri4d 10774 . 2 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
12599, 111, 121, 124mpjao3dan 1428 1 (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wrex 3110  Vcvv 3444  wss 3884  {csn 4528  {cpr 4530   class class class wbr 5033  cmpt 5113  dom cdm 5523  ran crn 5524   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7139  cc 10528  cr 10529   · cmul 10535  *cxr 10667   < clt 10668  cmin 10863  -cneg 10864  (,)cioo 12730  [,]cicc 12733  cnccncf 23484   D cdv 24469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24472  df-dv 24473
This theorem is referenced by:  dvne0  24617
  Copyright terms: Public domain W3C validator