MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvivth Structured version   Visualization version   GIF version

Theorem dvivth 24861
Description: Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc 24309 does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvivth.1 (𝜑𝑀 ∈ (𝐴(,)𝐵))
dvivth.2 (𝜑𝑁 ∈ (𝐴(,)𝐵))
dvivth.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
dvivth.4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
Assertion
Ref Expression
dvivth (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))

Proof of Theorem dvivth
Dummy variables 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvivth.1 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝐴(,)𝐵))
21adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 ∈ (𝐴(,)𝐵))
3 dvivth.2 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝐴(,)𝐵))
43adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 ∈ (𝐴(,)𝐵))
5 dvivth.3 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
6 cncff 23744 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
75, 6syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
87ffvelrnda 6882 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℝ)
98renegcld 11224 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → -(𝐹𝑤) ∈ ℝ)
109fmpttd 6910 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ)
11 ax-resscn 10751 . . . . . . . . . . . 12 ℝ ⊆ ℂ
12 ssid 3909 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
13 cncfss 23750 . . . . . . . . . . . . . . 15 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
1411, 12, 13mp2an 692 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)
1514, 5sseldi 3885 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
16 eqid 2736 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))
1716negfcncf 23774 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
1815, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
19 cncffvrn 23749 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ))
2011, 18, 19sylancr 590 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ))
2110, 20mpbird 260 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
2221adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
23 reelprrecn 10786 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
2423a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ℝ ∈ {ℝ, ℂ})
257adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
2625ffvelrnda 6882 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℝ)
2726recnd 10826 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℂ)
28 fvexd 6710 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑤) ∈ V)
2925feqmptd 6758 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤)))
3029oveq2d 7207 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) = (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤))))
31 ioossre 12961 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ ℝ
32 dvfre 24802 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
337, 31, 32sylancl 589 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
34 dvivth.4 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
3534feq2d 6509 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
3633, 35mpbid 235 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
3736adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
3837feqmptd 6758 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑤)))
3930, 38eqtr3d 2773 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑤)))
4024, 27, 28, 39dvmptneg 24817 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
4140dmeqd 5759 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
42 dmmptg 6085 . . . . . . . . . . 11 (∀𝑤 ∈ (𝐴(,)𝐵)-((ℝ D 𝐹)‘𝑤) ∈ V → dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝐴(,)𝐵))
43 negex 11041 . . . . . . . . . . . 12 -((ℝ D 𝐹)‘𝑤) ∈ V
4443a1i 11 . . . . . . . . . . 11 (𝑤 ∈ (𝐴(,)𝐵) → -((ℝ D 𝐹)‘𝑤) ∈ V)
4542, 44mprg 3065 . . . . . . . . . 10 dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝐴(,)𝐵)
4641, 45eqtrdi 2787 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = (𝐴(,)𝐵))
47 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 < 𝑁)
48 simprr 773 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))
4936, 1ffvelrnd 6883 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
5049adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
513, 34eleqtrrd 2834 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ dom (ℝ D 𝐹))
5233, 51ffvelrnd 6883 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
5352adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
54 iccssre 12982 . . . . . . . . . . . . . . 15 ((((ℝ D 𝐹)‘𝑀) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ∈ ℝ) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5549, 52, 54syl2anc 587 . . . . . . . . . . . . . 14 (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5655adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5756, 48sseldd 3888 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ℝ)
58 iccneg 13025 . . . . . . . . . . . 12 ((((ℝ D 𝐹)‘𝑀) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ↔ -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀))))
5950, 53, 57, 58syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ↔ -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀))))
6048, 59mpbid 235 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀)))
6140fveq1d 6697 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁) = ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁))
62 fveq2 6695 . . . . . . . . . . . . . . 15 (𝑤 = 𝑁 → ((ℝ D 𝐹)‘𝑤) = ((ℝ D 𝐹)‘𝑁))
6362negeqd 11037 . . . . . . . . . . . . . 14 (𝑤 = 𝑁 → -((ℝ D 𝐹)‘𝑤) = -((ℝ D 𝐹)‘𝑁))
64 eqid 2736 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))
65 negex 11041 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑁) ∈ V
6663, 64, 65fvmpt 6796 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐴(,)𝐵) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
674, 66syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
6861, 67eqtrd 2771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
6940fveq1d 6697 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀) = ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀))
70 fveq2 6695 . . . . . . . . . . . . . . 15 (𝑤 = 𝑀 → ((ℝ D 𝐹)‘𝑤) = ((ℝ D 𝐹)‘𝑀))
7170negeqd 11037 . . . . . . . . . . . . . 14 (𝑤 = 𝑀 → -((ℝ D 𝐹)‘𝑤) = -((ℝ D 𝐹)‘𝑀))
72 negex 11041 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑀) ∈ V
7371, 64, 72fvmpt 6796 . . . . . . . . . . . . 13 (𝑀 ∈ (𝐴(,)𝐵) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
742, 73syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
7569, 74eqtrd 2771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
7668, 75oveq12d 7209 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁)[,]((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀)) = (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀)))
7760, 76eleqtrrd 2834 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ (((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁)[,]((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀)))
78 eqid 2736 . . . . . . . . 9 (𝑦 ∈ (𝐴(,)𝐵) ↦ (((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))‘𝑦) − (-𝑥 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))‘𝑦) − (-𝑥 · 𝑦)))
792, 4, 22, 46, 47, 77, 78dvivthlem2 24860 . . . . . . . 8 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ ran (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))))
8040rneqd 5792 . . . . . . . 8 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ran (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
8179, 80eleqtrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
82 negex 11041 . . . . . . . 8 -𝑥 ∈ V
8364elrnmpt 5810 . . . . . . . 8 (-𝑥 ∈ V → (-𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤)))
8482, 83ax-mp 5 . . . . . . 7 (-𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤))
8581, 84sylib 221 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤))
8657recnd 10826 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ℂ)
8786adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
8824, 27, 28, 39dvmptcl 24810 . . . . . . . . 9 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑤) ∈ ℂ)
8987, 88neg11ad 11150 . . . . . . . 8 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ 𝑥 = ((ℝ D 𝐹)‘𝑤)))
90 eqcom 2743 . . . . . . . 8 (𝑥 = ((ℝ D 𝐹)‘𝑤) ↔ ((ℝ D 𝐹)‘𝑤) = 𝑥)
9189, 90bitrdi 290 . . . . . . 7 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ ((ℝ D 𝐹)‘𝑤) = 𝑥))
9291rexbidva 3205 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9385, 92mpbid 235 . . . . 5 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥)
9437ffnd 6524 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
95 fvelrnb 6751 . . . . . 6 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9694, 95syl 17 . . . . 5 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9793, 96mpbird 260 . . . 4 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ran (ℝ D 𝐹))
9897expr 460 . . 3 ((𝜑𝑀 < 𝑁) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) → 𝑥 ∈ ran (ℝ D 𝐹)))
9998ssrdv 3893 . 2 ((𝜑𝑀 < 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
100 fveq2 6695 . . . . 5 (𝑀 = 𝑁 → ((ℝ D 𝐹)‘𝑀) = ((ℝ D 𝐹)‘𝑁))
101100oveq1d 7206 . . . 4 (𝑀 = 𝑁 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) = (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)))
10252rexrd 10848 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ*)
103 iccid 12945 . . . . 5 (((ℝ D 𝐹)‘𝑁) ∈ ℝ* → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
104102, 103syl 17 . . . 4 (𝜑 → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
105101, 104sylan9eqr 2793 . . 3 ((𝜑𝑀 = 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
10633ffnd 6524 . . . . . 6 (𝜑 → (ℝ D 𝐹) Fn dom (ℝ D 𝐹))
107 fnfvelrn 6879 . . . . . 6 (((ℝ D 𝐹) Fn dom (ℝ D 𝐹) ∧ 𝑁 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑁) ∈ ran (ℝ D 𝐹))
108106, 51, 107syl2anc 587 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ran (ℝ D 𝐹))
109108snssd 4708 . . . 4 (𝜑 → {((ℝ D 𝐹)‘𝑁)} ⊆ ran (ℝ D 𝐹))
110109adantr 484 . . 3 ((𝜑𝑀 = 𝑁) → {((ℝ D 𝐹)‘𝑁)} ⊆ ran (ℝ D 𝐹))
111105, 110eqsstrd 3925 . 2 ((𝜑𝑀 = 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
1123adantr 484 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 ∈ (𝐴(,)𝐵))
1131adantr 484 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 ∈ (𝐴(,)𝐵))
1145adantr 484 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
11534adantr 484 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
116 simprl 771 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 < 𝑀)
117 simprr 773 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))
118 eqid 2736 . . . . 5 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝑥 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝑥 · 𝑦)))
119112, 113, 114, 115, 116, 117, 118dvivthlem2 24860 . . . 4 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ran (ℝ D 𝐹))
120119expr 460 . . 3 ((𝜑𝑁 < 𝑀) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) → 𝑥 ∈ ran (ℝ D 𝐹)))
121120ssrdv 3893 . 2 ((𝜑𝑁 < 𝑀) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
12231, 1sseldi 3885 . . 3 (𝜑𝑀 ∈ ℝ)
12331, 3sseldi 3885 . . 3 (𝜑𝑁 ∈ ℝ)
124122, 123lttri4d 10938 . 2 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
12599, 111, 121, 124mpjao3dan 1433 1 (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wrex 3052  Vcvv 3398  wss 3853  {csn 4527  {cpr 4529   class class class wbr 5039  cmpt 5120  dom cdm 5536  ran crn 5537   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  cr 10693   · cmul 10699  *cxr 10831   < clt 10832  cmin 11027  -cneg 11028  (,)cioo 12900  [,]cicc 12903  cnccncf 23727   D cdv 24714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-cmp 22238  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cncf 23729  df-limc 24717  df-dv 24718
This theorem is referenced by:  dvne0  24862
  Copyright terms: Public domain W3C validator