MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvivth Structured version   Visualization version   GIF version

Theorem dvivth 25985
Description: Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc 25429 does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvivth.1 (𝜑𝑀 ∈ (𝐴(,)𝐵))
dvivth.2 (𝜑𝑁 ∈ (𝐴(,)𝐵))
dvivth.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
dvivth.4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
Assertion
Ref Expression
dvivth (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))

Proof of Theorem dvivth
Dummy variables 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvivth.1 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝐴(,)𝐵))
21adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 ∈ (𝐴(,)𝐵))
3 dvivth.2 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝐴(,)𝐵))
43adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 ∈ (𝐴(,)𝐵))
5 dvivth.3 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
6 cncff 24855 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
75, 6syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
87ffvelcdmda 7084 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℝ)
98renegcld 11672 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → -(𝐹𝑤) ∈ ℝ)
109fmpttd 7115 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ)
11 ax-resscn 11194 . . . . . . . . . . . 12 ℝ ⊆ ℂ
12 ssid 3986 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
13 cncfss 24861 . . . . . . . . . . . . . . 15 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
1411, 12, 13mp2an 692 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)
1514, 5sselid 3961 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
16 eqid 2734 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))
1716negfcncf 24886 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
1815, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
19 cncfcdm 24860 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ))
2011, 18, 19sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ))
2110, 20mpbird 257 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
2221adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
23 reelprrecn 11229 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
2423a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ℝ ∈ {ℝ, ℂ})
257adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
2625ffvelcdmda 7084 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℝ)
2726recnd 11271 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℂ)
28 fvexd 6901 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑤) ∈ V)
2925feqmptd 6957 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤)))
3029oveq2d 7429 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) = (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤))))
31 ioossre 13430 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ ℝ
32 dvfre 25925 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
337, 31, 32sylancl 586 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
34 dvivth.4 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
3534feq2d 6702 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
3633, 35mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
3736adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
3837feqmptd 6957 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑤)))
3930, 38eqtr3d 2771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑤)))
4024, 27, 28, 39dvmptneg 25940 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
4140dmeqd 5896 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
42 dmmptg 6242 . . . . . . . . . . 11 (∀𝑤 ∈ (𝐴(,)𝐵)-((ℝ D 𝐹)‘𝑤) ∈ V → dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝐴(,)𝐵))
43 negex 11488 . . . . . . . . . . . 12 -((ℝ D 𝐹)‘𝑤) ∈ V
4443a1i 11 . . . . . . . . . . 11 (𝑤 ∈ (𝐴(,)𝐵) → -((ℝ D 𝐹)‘𝑤) ∈ V)
4542, 44mprg 3056 . . . . . . . . . 10 dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝐴(,)𝐵)
4641, 45eqtrdi 2785 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = (𝐴(,)𝐵))
47 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 < 𝑁)
48 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))
4936, 1ffvelcdmd 7085 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
5049adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
513, 34eleqtrrd 2836 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ dom (ℝ D 𝐹))
5233, 51ffvelcdmd 7085 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
5352adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
54 iccssre 13451 . . . . . . . . . . . . . . 15 ((((ℝ D 𝐹)‘𝑀) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ∈ ℝ) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5549, 52, 54syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5655adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5756, 48sseldd 3964 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ℝ)
58 iccneg 13494 . . . . . . . . . . . 12 ((((ℝ D 𝐹)‘𝑀) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ↔ -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀))))
5950, 53, 57, 58syl3anc 1372 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ↔ -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀))))
6048, 59mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀)))
6140fveq1d 6888 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁) = ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁))
62 fveq2 6886 . . . . . . . . . . . . . . 15 (𝑤 = 𝑁 → ((ℝ D 𝐹)‘𝑤) = ((ℝ D 𝐹)‘𝑁))
6362negeqd 11484 . . . . . . . . . . . . . 14 (𝑤 = 𝑁 → -((ℝ D 𝐹)‘𝑤) = -((ℝ D 𝐹)‘𝑁))
64 eqid 2734 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))
65 negex 11488 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑁) ∈ V
6663, 64, 65fvmpt 6996 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐴(,)𝐵) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
674, 66syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
6861, 67eqtrd 2769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
6940fveq1d 6888 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀) = ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀))
70 fveq2 6886 . . . . . . . . . . . . . . 15 (𝑤 = 𝑀 → ((ℝ D 𝐹)‘𝑤) = ((ℝ D 𝐹)‘𝑀))
7170negeqd 11484 . . . . . . . . . . . . . 14 (𝑤 = 𝑀 → -((ℝ D 𝐹)‘𝑤) = -((ℝ D 𝐹)‘𝑀))
72 negex 11488 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑀) ∈ V
7371, 64, 72fvmpt 6996 . . . . . . . . . . . . 13 (𝑀 ∈ (𝐴(,)𝐵) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
742, 73syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
7569, 74eqtrd 2769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
7668, 75oveq12d 7431 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁)[,]((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀)) = (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀)))
7760, 76eleqtrrd 2836 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ (((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁)[,]((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀)))
78 eqid 2734 . . . . . . . . 9 (𝑦 ∈ (𝐴(,)𝐵) ↦ (((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))‘𝑦) − (-𝑥 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))‘𝑦) − (-𝑥 · 𝑦)))
792, 4, 22, 46, 47, 77, 78dvivthlem2 25984 . . . . . . . 8 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ ran (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))))
8040rneqd 5929 . . . . . . . 8 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ran (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
8179, 80eleqtrd 2835 . . . . . . 7 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
82 negex 11488 . . . . . . . 8 -𝑥 ∈ V
8364elrnmpt 5949 . . . . . . . 8 (-𝑥 ∈ V → (-𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤)))
8482, 83ax-mp 5 . . . . . . 7 (-𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤))
8581, 84sylib 218 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤))
8657recnd 11271 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ℂ)
8786adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
8824, 27, 28, 39dvmptcl 25933 . . . . . . . . 9 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑤) ∈ ℂ)
8987, 88neg11ad 11598 . . . . . . . 8 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ 𝑥 = ((ℝ D 𝐹)‘𝑤)))
90 eqcom 2741 . . . . . . . 8 (𝑥 = ((ℝ D 𝐹)‘𝑤) ↔ ((ℝ D 𝐹)‘𝑤) = 𝑥)
9189, 90bitrdi 287 . . . . . . 7 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ ((ℝ D 𝐹)‘𝑤) = 𝑥))
9291rexbidva 3164 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9385, 92mpbid 232 . . . . 5 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥)
9437ffnd 6717 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
95 fvelrnb 6949 . . . . . 6 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9694, 95syl 17 . . . . 5 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9793, 96mpbird 257 . . . 4 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ran (ℝ D 𝐹))
9897expr 456 . . 3 ((𝜑𝑀 < 𝑁) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) → 𝑥 ∈ ran (ℝ D 𝐹)))
9998ssrdv 3969 . 2 ((𝜑𝑀 < 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
100 fveq2 6886 . . . . 5 (𝑀 = 𝑁 → ((ℝ D 𝐹)‘𝑀) = ((ℝ D 𝐹)‘𝑁))
101100oveq1d 7428 . . . 4 (𝑀 = 𝑁 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) = (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)))
10252rexrd 11293 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ*)
103 iccid 13414 . . . . 5 (((ℝ D 𝐹)‘𝑁) ∈ ℝ* → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
104102, 103syl 17 . . . 4 (𝜑 → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
105101, 104sylan9eqr 2791 . . 3 ((𝜑𝑀 = 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
10633ffnd 6717 . . . . . 6 (𝜑 → (ℝ D 𝐹) Fn dom (ℝ D 𝐹))
107 fnfvelrn 7080 . . . . . 6 (((ℝ D 𝐹) Fn dom (ℝ D 𝐹) ∧ 𝑁 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑁) ∈ ran (ℝ D 𝐹))
108106, 51, 107syl2anc 584 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ran (ℝ D 𝐹))
109108snssd 4789 . . . 4 (𝜑 → {((ℝ D 𝐹)‘𝑁)} ⊆ ran (ℝ D 𝐹))
110109adantr 480 . . 3 ((𝜑𝑀 = 𝑁) → {((ℝ D 𝐹)‘𝑁)} ⊆ ran (ℝ D 𝐹))
111105, 110eqsstrd 3998 . 2 ((𝜑𝑀 = 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
1123adantr 480 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 ∈ (𝐴(,)𝐵))
1131adantr 480 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 ∈ (𝐴(,)𝐵))
1145adantr 480 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
11534adantr 480 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
116 simprl 770 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 < 𝑀)
117 simprr 772 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))
118 eqid 2734 . . . . 5 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝑥 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝑥 · 𝑦)))
119112, 113, 114, 115, 116, 117, 118dvivthlem2 25984 . . . 4 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ran (ℝ D 𝐹))
120119expr 456 . . 3 ((𝜑𝑁 < 𝑀) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) → 𝑥 ∈ ran (ℝ D 𝐹)))
121120ssrdv 3969 . 2 ((𝜑𝑁 < 𝑀) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
12231, 1sselid 3961 . . 3 (𝜑𝑀 ∈ ℝ)
12331, 3sselid 3961 . . 3 (𝜑𝑁 ∈ ℝ)
124122, 123lttri4d 11384 . 2 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
12599, 111, 121, 124mpjao3dan 1433 1 (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3463  wss 3931  {csn 4606  {cpr 4608   class class class wbr 5123  cmpt 5205  dom cdm 5665  ran crn 5666   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  cc 11135  cr 11136   · cmul 11142  *cxr 11276   < clt 11277  cmin 11474  -cneg 11475  (,)cioo 13369  [,]cicc 13372  cnccncf 24838   D cdv 25834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19768  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-fbas 21323  df-fg 21324  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-lp 23090  df-perf 23091  df-cn 23181  df-cnp 23182  df-haus 23269  df-cmp 23341  df-tx 23516  df-hmeo 23709  df-fil 23800  df-fm 23892  df-flim 23893  df-flf 23894  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24840  df-limc 25837  df-dv 25838
This theorem is referenced by:  dvne0  25986
  Copyright terms: Public domain W3C validator