![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > atanbnd | Structured version Visualization version GIF version |
Description: The arctangent function is bounded by Ο / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015.) |
Ref | Expression |
---|---|
atanbnd | β’ (π΄ β β β (arctanβπ΄) β (-(Ο / 2)(,)(Ο / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atanre 26731 | . . . . . . 7 β’ (π΄ β β β π΄ β dom arctan) | |
2 | 1 | adantr 480 | . . . . . 6 β’ ((π΄ β β β§ π΄ < 0) β π΄ β dom arctan) |
3 | atanneg 26753 | . . . . . 6 β’ (π΄ β dom arctan β (arctanβ-π΄) = -(arctanβπ΄)) | |
4 | 2, 3 | syl 17 | . . . . 5 β’ ((π΄ β β β§ π΄ < 0) β (arctanβ-π΄) = -(arctanβπ΄)) |
5 | renegcl 11530 | . . . . . . . 8 β’ (π΄ β β β -π΄ β β) | |
6 | 5 | adantr 480 | . . . . . . 7 β’ ((π΄ β β β§ π΄ < 0) β -π΄ β β) |
7 | lt0neg1 11727 | . . . . . . . 8 β’ (π΄ β β β (π΄ < 0 β 0 < -π΄)) | |
8 | 7 | biimpa 476 | . . . . . . 7 β’ ((π΄ β β β§ π΄ < 0) β 0 < -π΄) |
9 | 6, 8 | elrpd 13020 | . . . . . 6 β’ ((π΄ β β β§ π΄ < 0) β -π΄ β β+) |
10 | atanbndlem 26771 | . . . . . 6 β’ (-π΄ β β+ β (arctanβ-π΄) β (-(Ο / 2)(,)(Ο / 2))) | |
11 | 9, 10 | syl 17 | . . . . 5 β’ ((π΄ β β β§ π΄ < 0) β (arctanβ-π΄) β (-(Ο / 2)(,)(Ο / 2))) |
12 | 4, 11 | eqeltrrd 2833 | . . . 4 β’ ((π΄ β β β§ π΄ < 0) β -(arctanβπ΄) β (-(Ο / 2)(,)(Ο / 2))) |
13 | halfpire 26314 | . . . . . . 7 β’ (Ο / 2) β β | |
14 | 13 | recni 11235 | . . . . . 6 β’ (Ο / 2) β β |
15 | 14 | negnegi 11537 | . . . . 5 β’ --(Ο / 2) = (Ο / 2) |
16 | 15 | oveq2i 7423 | . . . 4 β’ (-(Ο / 2)(,)--(Ο / 2)) = (-(Ο / 2)(,)(Ο / 2)) |
17 | 12, 16 | eleqtrrdi 2843 | . . 3 β’ ((π΄ β β β§ π΄ < 0) β -(arctanβπ΄) β (-(Ο / 2)(,)--(Ο / 2))) |
18 | neghalfpire 26315 | . . . 4 β’ -(Ο / 2) β β | |
19 | atanrecl 26757 | . . . . 5 β’ (π΄ β β β (arctanβπ΄) β β) | |
20 | 19 | adantr 480 | . . . 4 β’ ((π΄ β β β§ π΄ < 0) β (arctanβπ΄) β β) |
21 | iooneg 13455 | . . . 4 β’ ((-(Ο / 2) β β β§ (Ο / 2) β β β§ (arctanβπ΄) β β) β ((arctanβπ΄) β (-(Ο / 2)(,)(Ο / 2)) β -(arctanβπ΄) β (-(Ο / 2)(,)--(Ο / 2)))) | |
22 | 18, 13, 20, 21 | mp3an12i 1464 | . . 3 β’ ((π΄ β β β§ π΄ < 0) β ((arctanβπ΄) β (-(Ο / 2)(,)(Ο / 2)) β -(arctanβπ΄) β (-(Ο / 2)(,)--(Ο / 2)))) |
23 | 17, 22 | mpbird 257 | . 2 β’ ((π΄ β β β§ π΄ < 0) β (arctanβπ΄) β (-(Ο / 2)(,)(Ο / 2))) |
24 | simpr 484 | . . . . 5 β’ ((π΄ β β β§ π΄ = 0) β π΄ = 0) | |
25 | 24 | fveq2d 6895 | . . . 4 β’ ((π΄ β β β§ π΄ = 0) β (arctanβπ΄) = (arctanβ0)) |
26 | atan0 26754 | . . . 4 β’ (arctanβ0) = 0 | |
27 | 25, 26 | eqtrdi 2787 | . . 3 β’ ((π΄ β β β§ π΄ = 0) β (arctanβπ΄) = 0) |
28 | 0re 11223 | . . . 4 β’ 0 β β | |
29 | pirp 26311 | . . . . . 6 β’ Ο β β+ | |
30 | rphalfcl 13008 | . . . . . 6 β’ (Ο β β+ β (Ο / 2) β β+) | |
31 | rpgt0 12993 | . . . . . 6 β’ ((Ο / 2) β β+ β 0 < (Ο / 2)) | |
32 | 29, 30, 31 | mp2b 10 | . . . . 5 β’ 0 < (Ο / 2) |
33 | lt0neg2 11728 | . . . . . 6 β’ ((Ο / 2) β β β (0 < (Ο / 2) β -(Ο / 2) < 0)) | |
34 | 13, 33 | ax-mp 5 | . . . . 5 β’ (0 < (Ο / 2) β -(Ο / 2) < 0) |
35 | 32, 34 | mpbi 229 | . . . 4 β’ -(Ο / 2) < 0 |
36 | 18 | rexri 11279 | . . . . 5 β’ -(Ο / 2) β β* |
37 | 13 | rexri 11279 | . . . . 5 β’ (Ο / 2) β β* |
38 | elioo2 13372 | . . . . 5 β’ ((-(Ο / 2) β β* β§ (Ο / 2) β β*) β (0 β (-(Ο / 2)(,)(Ο / 2)) β (0 β β β§ -(Ο / 2) < 0 β§ 0 < (Ο / 2)))) | |
39 | 36, 37, 38 | mp2an 689 | . . . 4 β’ (0 β (-(Ο / 2)(,)(Ο / 2)) β (0 β β β§ -(Ο / 2) < 0 β§ 0 < (Ο / 2))) |
40 | 28, 35, 32, 39 | mpbir3an 1340 | . . 3 β’ 0 β (-(Ο / 2)(,)(Ο / 2)) |
41 | 27, 40 | eqeltrdi 2840 | . 2 β’ ((π΄ β β β§ π΄ = 0) β (arctanβπ΄) β (-(Ο / 2)(,)(Ο / 2))) |
42 | elrp 12983 | . . 3 β’ (π΄ β β+ β (π΄ β β β§ 0 < π΄)) | |
43 | atanbndlem 26771 | . . 3 β’ (π΄ β β+ β (arctanβπ΄) β (-(Ο / 2)(,)(Ο / 2))) | |
44 | 42, 43 | sylbir 234 | . 2 β’ ((π΄ β β β§ 0 < π΄) β (arctanβπ΄) β (-(Ο / 2)(,)(Ο / 2))) |
45 | lttri4 11305 | . . 3 β’ ((π΄ β β β§ 0 β β) β (π΄ < 0 β¨ π΄ = 0 β¨ 0 < π΄)) | |
46 | 28, 45 | mpan2 688 | . 2 β’ (π΄ β β β (π΄ < 0 β¨ π΄ = 0 β¨ 0 < π΄)) |
47 | 23, 41, 44, 46 | mpjao3dan 1430 | 1 β’ (π΄ β β β (arctanβπ΄) β (-(Ο / 2)(,)(Ο / 2))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β¨ w3o 1085 β§ w3a 1086 = wceq 1540 β wcel 2105 class class class wbr 5148 dom cdm 5676 βcfv 6543 (class class class)co 7412 βcr 11115 0cc0 11116 β*cxr 11254 < clt 11255 -cneg 11452 / cdiv 11878 2c2 12274 β+crp 12981 (,)cioo 13331 Οcpi 16017 arctancatan 26710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ioc 13336 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-mod 13842 df-seq 13974 df-exp 14035 df-fac 14241 df-bc 14270 df-hash 14298 df-shft 15021 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-limsup 15422 df-clim 15439 df-rlim 15440 df-sum 15640 df-ef 16018 df-sin 16020 df-cos 16021 df-tan 16022 df-pi 16023 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19229 df-cmn 19698 df-psmet 21225 df-xmet 21226 df-met 21227 df-bl 21228 df-mopn 21229 df-fbas 21230 df-fg 21231 df-cnfld 21234 df-top 22716 df-topon 22733 df-topsp 22755 df-bases 22769 df-cld 22843 df-ntr 22844 df-cls 22845 df-nei 22922 df-lp 22960 df-perf 22961 df-cn 23051 df-cnp 23052 df-haus 23139 df-tx 23386 df-hmeo 23579 df-fil 23670 df-fm 23762 df-flim 23763 df-flf 23764 df-xms 24146 df-ms 24147 df-tms 24148 df-cncf 24718 df-limc 25715 df-dv 25716 df-log 26405 df-atan 26713 |
This theorem is referenced by: atanord 26773 |
Copyright terms: Public domain | W3C validator |