| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > atanbnd | Structured version Visualization version GIF version | ||
| Description: The arctangent function is bounded by π / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| Ref | Expression |
|---|---|
| atanbnd | ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atanre 26823 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ∈ dom arctan) |
| 3 | atanneg 26845 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘-𝐴) = -(arctan‘𝐴)) |
| 5 | renegcl 11424 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ) |
| 7 | lt0neg1 11623 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | |
| 8 | 7 | biimpa 476 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < -𝐴) |
| 9 | 6, 8 | elrpd 12931 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ+) |
| 10 | atanbndlem 26863 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ+ → (arctan‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 12 | 4, 11 | eqeltrrd 2832 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -(arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 13 | halfpire 26401 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
| 14 | 13 | recni 11126 | . . . . . 6 ⊢ (π / 2) ∈ ℂ |
| 15 | 14 | negnegi 11431 | . . . . 5 ⊢ --(π / 2) = (π / 2) |
| 16 | 15 | oveq2i 7357 | . . . 4 ⊢ (-(π / 2)(,)--(π / 2)) = (-(π / 2)(,)(π / 2)) |
| 17 | 12, 16 | eleqtrrdi 2842 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2))) |
| 18 | neghalfpire 26402 | . . . 4 ⊢ -(π / 2) ∈ ℝ | |
| 19 | atanrecl 26849 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ) | |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘𝐴) ∈ ℝ) |
| 21 | iooneg 13371 | . . . 4 ⊢ ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))) | |
| 22 | 18, 13, 20, 21 | mp3an12i 1467 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))) |
| 23 | 17, 22 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → 𝐴 = 0) | |
| 25 | 24 | fveq2d 6826 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) = (arctan‘0)) |
| 26 | atan0 26846 | . . . 4 ⊢ (arctan‘0) = 0 | |
| 27 | 25, 26 | eqtrdi 2782 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) = 0) |
| 28 | 0re 11114 | . . . 4 ⊢ 0 ∈ ℝ | |
| 29 | pirp 26398 | . . . . . 6 ⊢ π ∈ ℝ+ | |
| 30 | rphalfcl 12919 | . . . . . 6 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
| 31 | rpgt0 12903 | . . . . . 6 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
| 32 | 29, 30, 31 | mp2b 10 | . . . . 5 ⊢ 0 < (π / 2) |
| 33 | lt0neg2 11624 | . . . . . 6 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
| 34 | 13, 33 | ax-mp 5 | . . . . 5 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
| 35 | 32, 34 | mpbi 230 | . . . 4 ⊢ -(π / 2) < 0 |
| 36 | 18 | rexri 11170 | . . . . 5 ⊢ -(π / 2) ∈ ℝ* |
| 37 | 13 | rexri 11170 | . . . . 5 ⊢ (π / 2) ∈ ℝ* |
| 38 | elioo2 13286 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (0 ∈ (-(π / 2)(,)(π / 2)) ↔ (0 ∈ ℝ ∧ -(π / 2) < 0 ∧ 0 < (π / 2)))) | |
| 39 | 36, 37, 38 | mp2an 692 | . . . 4 ⊢ (0 ∈ (-(π / 2)(,)(π / 2)) ↔ (0 ∈ ℝ ∧ -(π / 2) < 0 ∧ 0 < (π / 2))) |
| 40 | 28, 35, 32, 39 | mpbir3an 1342 | . . 3 ⊢ 0 ∈ (-(π / 2)(,)(π / 2)) |
| 41 | 27, 40 | eqeltrdi 2839 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 42 | elrp 12892 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 43 | atanbndlem 26863 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | |
| 44 | 42, 43 | sylbir 235 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 45 | lttri4 11197 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴)) | |
| 46 | 28, 45 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴)) |
| 47 | 23, 41, 44, 46 | mpjao3dan 1434 | 1 ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 ℝ*cxr 11145 < clt 11146 -cneg 11345 / cdiv 11774 2c2 12180 ℝ+crp 12890 (,)cioo 13245 πcpi 15973 arctancatan 26802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-tan 15978 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-fbas 21289 df-fg 21290 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-log 26493 df-atan 26805 |
| This theorem is referenced by: atanord 26865 |
| Copyright terms: Public domain | W3C validator |