| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > atanbnd | Structured version Visualization version GIF version | ||
| Description: The arctangent function is bounded by π / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| Ref | Expression |
|---|---|
| atanbnd | ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atanre 26802 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ∈ dom arctan) |
| 3 | atanneg 26824 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘-𝐴) = -(arctan‘𝐴)) |
| 5 | renegcl 11492 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ) |
| 7 | lt0neg1 11691 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | |
| 8 | 7 | biimpa 476 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < -𝐴) |
| 9 | 6, 8 | elrpd 12999 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ+) |
| 10 | atanbndlem 26842 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ+ → (arctan‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 12 | 4, 11 | eqeltrrd 2830 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -(arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 13 | halfpire 26380 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
| 14 | 13 | recni 11195 | . . . . . 6 ⊢ (π / 2) ∈ ℂ |
| 15 | 14 | negnegi 11499 | . . . . 5 ⊢ --(π / 2) = (π / 2) |
| 16 | 15 | oveq2i 7401 | . . . 4 ⊢ (-(π / 2)(,)--(π / 2)) = (-(π / 2)(,)(π / 2)) |
| 17 | 12, 16 | eleqtrrdi 2840 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2))) |
| 18 | neghalfpire 26381 | . . . 4 ⊢ -(π / 2) ∈ ℝ | |
| 19 | atanrecl 26828 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ) | |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘𝐴) ∈ ℝ) |
| 21 | iooneg 13439 | . . . 4 ⊢ ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))) | |
| 22 | 18, 13, 20, 21 | mp3an12i 1467 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))) |
| 23 | 17, 22 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → 𝐴 = 0) | |
| 25 | 24 | fveq2d 6865 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) = (arctan‘0)) |
| 26 | atan0 26825 | . . . 4 ⊢ (arctan‘0) = 0 | |
| 27 | 25, 26 | eqtrdi 2781 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) = 0) |
| 28 | 0re 11183 | . . . 4 ⊢ 0 ∈ ℝ | |
| 29 | pirp 26377 | . . . . . 6 ⊢ π ∈ ℝ+ | |
| 30 | rphalfcl 12987 | . . . . . 6 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
| 31 | rpgt0 12971 | . . . . . 6 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
| 32 | 29, 30, 31 | mp2b 10 | . . . . 5 ⊢ 0 < (π / 2) |
| 33 | lt0neg2 11692 | . . . . . 6 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
| 34 | 13, 33 | ax-mp 5 | . . . . 5 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
| 35 | 32, 34 | mpbi 230 | . . . 4 ⊢ -(π / 2) < 0 |
| 36 | 18 | rexri 11239 | . . . . 5 ⊢ -(π / 2) ∈ ℝ* |
| 37 | 13 | rexri 11239 | . . . . 5 ⊢ (π / 2) ∈ ℝ* |
| 38 | elioo2 13354 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (0 ∈ (-(π / 2)(,)(π / 2)) ↔ (0 ∈ ℝ ∧ -(π / 2) < 0 ∧ 0 < (π / 2)))) | |
| 39 | 36, 37, 38 | mp2an 692 | . . . 4 ⊢ (0 ∈ (-(π / 2)(,)(π / 2)) ↔ (0 ∈ ℝ ∧ -(π / 2) < 0 ∧ 0 < (π / 2))) |
| 40 | 28, 35, 32, 39 | mpbir3an 1342 | . . 3 ⊢ 0 ∈ (-(π / 2)(,)(π / 2)) |
| 41 | 27, 40 | eqeltrdi 2837 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 42 | elrp 12960 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 43 | atanbndlem 26842 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | |
| 44 | 42, 43 | sylbir 235 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 45 | lttri4 11265 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴)) | |
| 46 | 28, 45 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴)) |
| 47 | 23, 41, 44, 46 | mpjao3dan 1434 | 1 ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 ℝ*cxr 11214 < clt 11215 -cneg 11413 / cdiv 11842 2c2 12248 ℝ+crp 12958 (,)cioo 13313 πcpi 16039 arctancatan 26781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-tan 16044 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 df-atan 26784 |
| This theorem is referenced by: atanord 26844 |
| Copyright terms: Public domain | W3C validator |