![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > atanbnd | Structured version Visualization version GIF version |
Description: The arctangent function is bounded by π / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015.) |
Ref | Expression |
---|---|
atanbnd | ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atanre 26943 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan) | |
2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ∈ dom arctan) |
3 | atanneg 26965 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴)) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘-𝐴) = -(arctan‘𝐴)) |
5 | renegcl 11570 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ) |
7 | lt0neg1 11767 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | |
8 | 7 | biimpa 476 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < -𝐴) |
9 | 6, 8 | elrpd 13072 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ+) |
10 | atanbndlem 26983 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ+ → (arctan‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) |
12 | 4, 11 | eqeltrrd 2840 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -(arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
13 | halfpire 26521 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
14 | 13 | recni 11273 | . . . . . 6 ⊢ (π / 2) ∈ ℂ |
15 | 14 | negnegi 11577 | . . . . 5 ⊢ --(π / 2) = (π / 2) |
16 | 15 | oveq2i 7442 | . . . 4 ⊢ (-(π / 2)(,)--(π / 2)) = (-(π / 2)(,)(π / 2)) |
17 | 12, 16 | eleqtrrdi 2850 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2))) |
18 | neghalfpire 26522 | . . . 4 ⊢ -(π / 2) ∈ ℝ | |
19 | atanrecl 26969 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ) | |
20 | 19 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘𝐴) ∈ ℝ) |
21 | iooneg 13508 | . . . 4 ⊢ ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))) | |
22 | 18, 13, 20, 21 | mp3an12i 1464 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))) |
23 | 17, 22 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
24 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → 𝐴 = 0) | |
25 | 24 | fveq2d 6911 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) = (arctan‘0)) |
26 | atan0 26966 | . . . 4 ⊢ (arctan‘0) = 0 | |
27 | 25, 26 | eqtrdi 2791 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) = 0) |
28 | 0re 11261 | . . . 4 ⊢ 0 ∈ ℝ | |
29 | pirp 26518 | . . . . . 6 ⊢ π ∈ ℝ+ | |
30 | rphalfcl 13060 | . . . . . 6 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
31 | rpgt0 13045 | . . . . . 6 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
32 | 29, 30, 31 | mp2b 10 | . . . . 5 ⊢ 0 < (π / 2) |
33 | lt0neg2 11768 | . . . . . 6 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
34 | 13, 33 | ax-mp 5 | . . . . 5 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
35 | 32, 34 | mpbi 230 | . . . 4 ⊢ -(π / 2) < 0 |
36 | 18 | rexri 11317 | . . . . 5 ⊢ -(π / 2) ∈ ℝ* |
37 | 13 | rexri 11317 | . . . . 5 ⊢ (π / 2) ∈ ℝ* |
38 | elioo2 13425 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (0 ∈ (-(π / 2)(,)(π / 2)) ↔ (0 ∈ ℝ ∧ -(π / 2) < 0 ∧ 0 < (π / 2)))) | |
39 | 36, 37, 38 | mp2an 692 | . . . 4 ⊢ (0 ∈ (-(π / 2)(,)(π / 2)) ↔ (0 ∈ ℝ ∧ -(π / 2) < 0 ∧ 0 < (π / 2))) |
40 | 28, 35, 32, 39 | mpbir3an 1340 | . . 3 ⊢ 0 ∈ (-(π / 2)(,)(π / 2)) |
41 | 27, 40 | eqeltrdi 2847 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
42 | elrp 13034 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
43 | atanbndlem 26983 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | |
44 | 42, 43 | sylbir 235 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
45 | lttri4 11343 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴)) | |
46 | 28, 45 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴)) |
47 | 23, 41, 44, 46 | mpjao3dan 1431 | 1 ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 0cc0 11153 ℝ*cxr 11292 < clt 11293 -cneg 11491 / cdiv 11918 2c2 12319 ℝ+crp 13032 (,)cioo 13384 πcpi 16099 arctancatan 26922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-sin 16102 df-cos 16103 df-tan 16104 df-pi 16105 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 df-log 26613 df-atan 26925 |
This theorem is referenced by: atanord 26985 |
Copyright terms: Public domain | W3C validator |