Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > atanbnd | Structured version Visualization version GIF version |
Description: The arctangent function is bounded by π / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015.) |
Ref | Expression |
---|---|
atanbnd | ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atanre 25773 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan) | |
2 | 1 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ∈ dom arctan) |
3 | atanneg 25795 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴)) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘-𝐴) = -(arctan‘𝐴)) |
5 | renegcl 11146 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
6 | 5 | adantr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ) |
7 | lt0neg1 11343 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | |
8 | 7 | biimpa 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < -𝐴) |
9 | 6, 8 | elrpd 12630 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ+) |
10 | atanbndlem 25813 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ+ → (arctan‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) |
12 | 4, 11 | eqeltrrd 2839 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -(arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
13 | halfpire 25359 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
14 | 13 | recni 10852 | . . . . . 6 ⊢ (π / 2) ∈ ℂ |
15 | 14 | negnegi 11153 | . . . . 5 ⊢ --(π / 2) = (π / 2) |
16 | 15 | oveq2i 7229 | . . . 4 ⊢ (-(π / 2)(,)--(π / 2)) = (-(π / 2)(,)(π / 2)) |
17 | 12, 16 | eleqtrrdi 2849 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2))) |
18 | neghalfpire 25360 | . . . 4 ⊢ -(π / 2) ∈ ℝ | |
19 | atanrecl 25799 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ) | |
20 | 19 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘𝐴) ∈ ℝ) |
21 | iooneg 13064 | . . . 4 ⊢ ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))) | |
22 | 18, 13, 20, 21 | mp3an12i 1467 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(arctan‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))) |
23 | 17, 22 | mpbird 260 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
24 | simpr 488 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → 𝐴 = 0) | |
25 | 24 | fveq2d 6726 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) = (arctan‘0)) |
26 | atan0 25796 | . . . 4 ⊢ (arctan‘0) = 0 | |
27 | 25, 26 | eqtrdi 2794 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) = 0) |
28 | 0re 10840 | . . . 4 ⊢ 0 ∈ ℝ | |
29 | pirp 25356 | . . . . . 6 ⊢ π ∈ ℝ+ | |
30 | rphalfcl 12618 | . . . . . 6 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
31 | rpgt0 12603 | . . . . . 6 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
32 | 29, 30, 31 | mp2b 10 | . . . . 5 ⊢ 0 < (π / 2) |
33 | lt0neg2 11344 | . . . . . 6 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
34 | 13, 33 | ax-mp 5 | . . . . 5 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
35 | 32, 34 | mpbi 233 | . . . 4 ⊢ -(π / 2) < 0 |
36 | 18 | rexri 10896 | . . . . 5 ⊢ -(π / 2) ∈ ℝ* |
37 | 13 | rexri 10896 | . . . . 5 ⊢ (π / 2) ∈ ℝ* |
38 | elioo2 12981 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (0 ∈ (-(π / 2)(,)(π / 2)) ↔ (0 ∈ ℝ ∧ -(π / 2) < 0 ∧ 0 < (π / 2)))) | |
39 | 36, 37, 38 | mp2an 692 | . . . 4 ⊢ (0 ∈ (-(π / 2)(,)(π / 2)) ↔ (0 ∈ ℝ ∧ -(π / 2) < 0 ∧ 0 < (π / 2))) |
40 | 28, 35, 32, 39 | mpbir3an 1343 | . . 3 ⊢ 0 ∈ (-(π / 2)(,)(π / 2)) |
41 | 27, 40 | eqeltrdi 2846 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
42 | elrp 12593 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
43 | atanbndlem 25813 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | |
44 | 42, 43 | sylbir 238 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
45 | lttri4 10922 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴)) | |
46 | 28, 45 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴)) |
47 | 23, 41, 44, 46 | mpjao3dan 1433 | 1 ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ w3o 1088 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 class class class wbr 5058 dom cdm 5556 ‘cfv 6385 (class class class)co 7218 ℝcr 10733 0cc0 10734 ℝ*cxr 10871 < clt 10872 -cneg 11068 / cdiv 11494 2c2 11890 ℝ+crp 12591 (,)cioo 12940 πcpi 15633 arctancatan 25752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-inf2 9261 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-pre-sup 10812 ax-addf 10813 ax-mulf 10814 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-iin 4912 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-se 5515 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-isom 6394 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-of 7474 df-om 7650 df-1st 7766 df-2nd 7767 df-supp 7909 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-2o 8208 df-er 8396 df-map 8515 df-pm 8516 df-ixp 8584 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-fsupp 8991 df-fi 9032 df-sup 9063 df-inf 9064 df-oi 9131 df-card 9560 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-3 11899 df-4 11900 df-5 11901 df-6 11902 df-7 11903 df-8 11904 df-9 11905 df-n0 12096 df-z 12182 df-dec 12299 df-uz 12444 df-q 12550 df-rp 12592 df-xneg 12709 df-xadd 12710 df-xmul 12711 df-ioo 12944 df-ioc 12945 df-ico 12946 df-icc 12947 df-fz 13101 df-fzo 13244 df-fl 13372 df-mod 13448 df-seq 13580 df-exp 13641 df-fac 13845 df-bc 13874 df-hash 13902 df-shft 14635 df-cj 14667 df-re 14668 df-im 14669 df-sqrt 14803 df-abs 14804 df-limsup 15037 df-clim 15054 df-rlim 15055 df-sum 15255 df-ef 15634 df-sin 15636 df-cos 15637 df-tan 15638 df-pi 15639 df-struct 16705 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-mulr 16821 df-starv 16822 df-sca 16823 df-vsca 16824 df-ip 16825 df-tset 16826 df-ple 16827 df-ds 16829 df-unif 16830 df-hom 16831 df-cco 16832 df-rest 16932 df-topn 16933 df-0g 16951 df-gsum 16952 df-topgen 16953 df-pt 16954 df-prds 16957 df-xrs 17012 df-qtop 17017 df-imas 17018 df-xps 17020 df-mre 17094 df-mrc 17095 df-acs 17097 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-submnd 18224 df-mulg 18494 df-cntz 18716 df-cmn 19177 df-psmet 20360 df-xmet 20361 df-met 20362 df-bl 20363 df-mopn 20364 df-fbas 20365 df-fg 20366 df-cnfld 20369 df-top 21796 df-topon 21813 df-topsp 21835 df-bases 21848 df-cld 21921 df-ntr 21922 df-cls 21923 df-nei 22000 df-lp 22038 df-perf 22039 df-cn 22129 df-cnp 22130 df-haus 22217 df-tx 22464 df-hmeo 22657 df-fil 22748 df-fm 22840 df-flim 22841 df-flf 22842 df-xms 23223 df-ms 23224 df-tms 23225 df-cncf 23780 df-limc 24768 df-dv 24769 df-log 25450 df-atan 25755 |
This theorem is referenced by: atanord 25815 |
Copyright terms: Public domain | W3C validator |