MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcflem Structured version   Visualization version   GIF version

Theorem mrcflem 17664
Description: The domain and codomain of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
mrcflem (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}):𝒫 𝑋𝐶)
Distinct variable groups:   𝑥,𝑠,𝐶   𝑥,𝑋,𝑠

Proof of Theorem mrcflem
StepHypRef Expression
1 simpl 482 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 ssrab2 4103 . . . 4 {𝑠𝐶𝑥𝑠} ⊆ 𝐶
32a1i 11 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠𝐶𝑥𝑠} ⊆ 𝐶)
4 sseq2 4035 . . . . 5 (𝑠 = 𝑋 → (𝑥𝑠𝑥𝑋))
5 mre1cl 17652 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
65adantr 480 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋𝐶)
7 elpwi 4629 . . . . . 6 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
87adantl 481 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
94, 6, 8elrabd 3710 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 ∈ {𝑠𝐶𝑥𝑠})
109ne0d 4365 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠𝐶𝑥𝑠} ≠ ∅)
11 mreintcl 17653 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑠𝐶𝑥𝑠} ⊆ 𝐶 ∧ {𝑠𝐶𝑥𝑠} ≠ ∅) → {𝑠𝐶𝑥𝑠} ∈ 𝐶)
121, 3, 10, 11syl3anc 1371 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠𝐶𝑥𝑠} ∈ 𝐶)
1312fmpttd 7149 1 (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}):𝒫 𝑋𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2946  {crab 3443  wss 3976  c0 4352  𝒫 cpw 4622   cint 4970  cmpt 5249  wf 6569  cfv 6573  Moorecmre 17640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-mre 17644
This theorem is referenced by:  fnmrc  17665  mrcfval  17666  mrcf  17667
  Copyright terms: Public domain W3C validator