![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcflem | Structured version Visualization version GIF version |
Description: The domain and codomain of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcflem | β’ (πΆ β (Mooreβπ) β (π₯ β π« π β¦ β© {π β πΆ β£ π₯ β π }):π« πβΆπΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 β’ ((πΆ β (Mooreβπ) β§ π₯ β π« π) β πΆ β (Mooreβπ)) | |
2 | ssrab2 4077 | . . . 4 β’ {π β πΆ β£ π₯ β π } β πΆ | |
3 | 2 | a1i 11 | . . 3 β’ ((πΆ β (Mooreβπ) β§ π₯ β π« π) β {π β πΆ β£ π₯ β π } β πΆ) |
4 | sseq2 4008 | . . . . 5 β’ (π = π β (π₯ β π β π₯ β π)) | |
5 | mre1cl 17543 | . . . . . 6 β’ (πΆ β (Mooreβπ) β π β πΆ) | |
6 | 5 | adantr 480 | . . . . 5 β’ ((πΆ β (Mooreβπ) β§ π₯ β π« π) β π β πΆ) |
7 | elpwi 4609 | . . . . . 6 β’ (π₯ β π« π β π₯ β π) | |
8 | 7 | adantl 481 | . . . . 5 β’ ((πΆ β (Mooreβπ) β§ π₯ β π« π) β π₯ β π) |
9 | 4, 6, 8 | elrabd 3685 | . . . 4 β’ ((πΆ β (Mooreβπ) β§ π₯ β π« π) β π β {π β πΆ β£ π₯ β π }) |
10 | 9 | ne0d 4335 | . . 3 β’ ((πΆ β (Mooreβπ) β§ π₯ β π« π) β {π β πΆ β£ π₯ β π } β β ) |
11 | mreintcl 17544 | . . 3 β’ ((πΆ β (Mooreβπ) β§ {π β πΆ β£ π₯ β π } β πΆ β§ {π β πΆ β£ π₯ β π } β β ) β β© {π β πΆ β£ π₯ β π } β πΆ) | |
12 | 1, 3, 10, 11 | syl3anc 1370 | . 2 β’ ((πΆ β (Mooreβπ) β§ π₯ β π« π) β β© {π β πΆ β£ π₯ β π } β πΆ) |
13 | 12 | fmpttd 7116 | 1 β’ (πΆ β (Mooreβπ) β (π₯ β π« π β¦ β© {π β πΆ β£ π₯ β π }):π« πβΆπΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β wcel 2105 β wne 2939 {crab 3431 β wss 3948 β c0 4322 π« cpw 4602 β© cint 4950 β¦ cmpt 5231 βΆwf 6539 βcfv 6543 Moorecmre 17531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-mre 17535 |
This theorem is referenced by: fnmrc 17556 mrcfval 17557 mrcf 17558 |
Copyright terms: Public domain | W3C validator |