| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcflem | Structured version Visualization version GIF version | ||
| Description: The domain and codomain of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcflem | ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}):𝒫 𝑋⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋)) | |
| 2 | ssrab2 4080 | . . . 4 ⊢ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ⊆ 𝐶 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ⊆ 𝐶) |
| 4 | sseq2 4010 | . . . . 5 ⊢ (𝑠 = 𝑋 → (𝑥 ⊆ 𝑠 ↔ 𝑥 ⊆ 𝑋)) | |
| 5 | mre1cl 17637 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 ∈ 𝐶) |
| 7 | elpwi 4607 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 ⊆ 𝑋) |
| 9 | 4, 6, 8 | elrabd 3694 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 ∈ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}) |
| 10 | 9 | ne0d 4342 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ≠ ∅) |
| 11 | mreintcl 17638 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ⊆ 𝐶 ∧ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ≠ ∅) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ∈ 𝐶) | |
| 12 | 1, 3, 10, 11 | syl3anc 1373 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ∈ 𝐶) |
| 13 | 12 | fmpttd 7135 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}):𝒫 𝑋⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 {crab 3436 ⊆ wss 3951 ∅c0 4333 𝒫 cpw 4600 ∩ cint 4946 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 Moorecmre 17625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-mre 17629 |
| This theorem is referenced by: fnmrc 17650 mrcfval 17651 mrcf 17652 |
| Copyright terms: Public domain | W3C validator |