| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcflem | Structured version Visualization version GIF version | ||
| Description: The domain and codomain of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcflem | ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}):𝒫 𝑋⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋)) | |
| 2 | ssrab2 4055 | . . . 4 ⊢ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ⊆ 𝐶 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ⊆ 𝐶) |
| 4 | sseq2 3985 | . . . . 5 ⊢ (𝑠 = 𝑋 → (𝑥 ⊆ 𝑠 ↔ 𝑥 ⊆ 𝑋)) | |
| 5 | mre1cl 17606 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 ∈ 𝐶) |
| 7 | elpwi 4582 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 ⊆ 𝑋) |
| 9 | 4, 6, 8 | elrabd 3673 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 ∈ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}) |
| 10 | 9 | ne0d 4317 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ≠ ∅) |
| 11 | mreintcl 17607 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ⊆ 𝐶 ∧ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ≠ ∅) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ∈ 𝐶) | |
| 12 | 1, 3, 10, 11 | syl3anc 1373 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ∈ 𝐶) |
| 13 | 12 | fmpttd 7105 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}):𝒫 𝑋⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 {crab 3415 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 ∩ cint 4922 ↦ cmpt 5201 ⟶wf 6527 ‘cfv 6531 Moorecmre 17594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-mre 17598 |
| This theorem is referenced by: fnmrc 17619 mrcfval 17620 mrcf 17621 |
| Copyright terms: Public domain | W3C validator |