MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcflem Structured version   Visualization version   GIF version

Theorem mrcflem 17649
Description: The domain and codomain of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
mrcflem (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}):𝒫 𝑋𝐶)
Distinct variable groups:   𝑥,𝑠,𝐶   𝑥,𝑋,𝑠

Proof of Theorem mrcflem
StepHypRef Expression
1 simpl 482 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 ssrab2 4080 . . . 4 {𝑠𝐶𝑥𝑠} ⊆ 𝐶
32a1i 11 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠𝐶𝑥𝑠} ⊆ 𝐶)
4 sseq2 4010 . . . . 5 (𝑠 = 𝑋 → (𝑥𝑠𝑥𝑋))
5 mre1cl 17637 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
65adantr 480 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋𝐶)
7 elpwi 4607 . . . . . 6 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
87adantl 481 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
94, 6, 8elrabd 3694 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 ∈ {𝑠𝐶𝑥𝑠})
109ne0d 4342 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠𝐶𝑥𝑠} ≠ ∅)
11 mreintcl 17638 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑠𝐶𝑥𝑠} ⊆ 𝐶 ∧ {𝑠𝐶𝑥𝑠} ≠ ∅) → {𝑠𝐶𝑥𝑠} ∈ 𝐶)
121, 3, 10, 11syl3anc 1373 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠𝐶𝑥𝑠} ∈ 𝐶)
1312fmpttd 7135 1 (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}):𝒫 𝑋𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2940  {crab 3436  wss 3951  c0 4333  𝒫 cpw 4600   cint 4946  cmpt 5225  wf 6557  cfv 6561  Moorecmre 17625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-mre 17629
This theorem is referenced by:  fnmrc  17650  mrcfval  17651  mrcf  17652
  Copyright terms: Public domain W3C validator