MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcflem Structured version   Visualization version   GIF version

Theorem mrcflem 17555
Description: The domain and codomain of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
mrcflem (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (π‘₯ ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠}):𝒫 π‘‹βŸΆπΆ)
Distinct variable groups:   π‘₯,𝑠,𝐢   π‘₯,𝑋,𝑠

Proof of Theorem mrcflem
StepHypRef Expression
1 simpl 482 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘₯ ∈ 𝒫 𝑋) β†’ 𝐢 ∈ (Mooreβ€˜π‘‹))
2 ssrab2 4077 . . . 4 {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠} βŠ† 𝐢
32a1i 11 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘₯ ∈ 𝒫 𝑋) β†’ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠} βŠ† 𝐢)
4 sseq2 4008 . . . . 5 (𝑠 = 𝑋 β†’ (π‘₯ βŠ† 𝑠 ↔ π‘₯ βŠ† 𝑋))
5 mre1cl 17543 . . . . . 6 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ 𝑋 ∈ 𝐢)
65adantr 480 . . . . 5 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘₯ ∈ 𝒫 𝑋) β†’ 𝑋 ∈ 𝐢)
7 elpwi 4609 . . . . . 6 (π‘₯ ∈ 𝒫 𝑋 β†’ π‘₯ βŠ† 𝑋)
87adantl 481 . . . . 5 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘₯ ∈ 𝒫 𝑋) β†’ π‘₯ βŠ† 𝑋)
94, 6, 8elrabd 3685 . . . 4 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘₯ ∈ 𝒫 𝑋) β†’ 𝑋 ∈ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠})
109ne0d 4335 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘₯ ∈ 𝒫 𝑋) β†’ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠} β‰  βˆ…)
11 mreintcl 17544 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠} βŠ† 𝐢 ∧ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠} β‰  βˆ…) β†’ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠} ∈ 𝐢)
121, 3, 10, 11syl3anc 1370 . 2 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘₯ ∈ 𝒫 𝑋) β†’ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠} ∈ 𝐢)
1312fmpttd 7116 1 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (π‘₯ ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠}):𝒫 π‘‹βŸΆπΆ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∈ wcel 2105   β‰  wne 2939  {crab 3431   βŠ† wss 3948  βˆ…c0 4322  π’« cpw 4602  βˆ© cint 4950   ↦ cmpt 5231  βŸΆwf 6539  β€˜cfv 6543  Moorecmre 17531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-mre 17535
This theorem is referenced by:  fnmrc  17556  mrcfval  17557  mrcf  17558
  Copyright terms: Public domain W3C validator