MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcf Structured version   Visualization version   GIF version

Theorem mrcf 17667
Description: The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcf (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)

Proof of Theorem mrcf
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrcflem 17664 . 2 (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}):𝒫 𝑋𝐶)
2 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
32mrcfval 17666 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
43feq1d 6732 . 2 (𝐶 ∈ (Moore‘𝑋) → (𝐹:𝒫 𝑋𝐶 ↔ (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}):𝒫 𝑋𝐶))
51, 4mpbird 257 1 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  wss 3976  𝒫 cpw 4622   cint 4970  cmpt 5249  wf 6569  cfv 6573  Moorecmre 17640  mrClscmrc 17641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-mre 17644  df-mrc 17645
This theorem is referenced by:  mrccl  17669  mrcssv  17672  mrcuni  17679  mrcun  17680  isacs2  17711  isacs4lem  18614  isacs5  18618  ismrcd2  42655  ismrc  42657  isnacs2  42662  isnacs3  42666
  Copyright terms: Public domain W3C validator