MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcf Structured version   Visualization version   GIF version

Theorem mrcf 16872
Description: The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcf (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)

Proof of Theorem mrcf
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrcflem 16869 . 2 (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}):𝒫 𝑋𝐶)
2 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
32mrcfval 16871 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
43feq1d 6472 . 2 (𝐶 ∈ (Moore‘𝑋) → (𝐹:𝒫 𝑋𝐶 ↔ (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}):𝒫 𝑋𝐶))
51, 4mpbird 260 1 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  {crab 3110  wss 3881  𝒫 cpw 4497   cint 4838  cmpt 5110  wf 6320  cfv 6324  Moorecmre 16845  mrClscmrc 16846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-mre 16849  df-mrc 16850
This theorem is referenced by:  mrccl  16874  mrcssv  16877  mrcuni  16884  mrcun  16885  isacs2  16916  isacs4lem  17770  isacs5  17774  ismrcd2  39640  ismrc  39642  isnacs2  39647  isnacs3  39651
  Copyright terms: Public domain W3C validator