![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcf | Structured version Visualization version GIF version |
Description: The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | β’ πΉ = (mrClsβπΆ) |
Ref | Expression |
---|---|
mrcf | β’ (πΆ β (Mooreβπ) β πΉ:π« πβΆπΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcflem 17550 | . 2 β’ (πΆ β (Mooreβπ) β (π₯ β π« π β¦ β© {π β πΆ β£ π₯ β π }):π« πβΆπΆ) | |
2 | mrcfval.f | . . . 4 β’ πΉ = (mrClsβπΆ) | |
3 | 2 | mrcfval 17552 | . . 3 β’ (πΆ β (Mooreβπ) β πΉ = (π₯ β π« π β¦ β© {π β πΆ β£ π₯ β π })) |
4 | 3 | feq1d 6703 | . 2 β’ (πΆ β (Mooreβπ) β (πΉ:π« πβΆπΆ β (π₯ β π« π β¦ β© {π β πΆ β£ π₯ β π }):π« πβΆπΆ)) |
5 | 1, 4 | mpbird 257 | 1 β’ (πΆ β (Mooreβπ) β πΉ:π« πβΆπΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 {crab 3433 β wss 3949 π« cpw 4603 β© cint 4951 β¦ cmpt 5232 βΆwf 6540 βcfv 6544 Moorecmre 17526 mrClscmrc 17527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-mre 17530 df-mrc 17531 |
This theorem is referenced by: mrccl 17555 mrcssv 17558 mrcuni 17565 mrcun 17566 isacs2 17597 isacs4lem 18497 isacs5 18501 ismrcd2 41437 ismrc 41439 isnacs2 41444 isnacs3 41448 |
Copyright terms: Public domain | W3C validator |