Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrcf | Structured version Visualization version GIF version |
Description: The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcf | ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcflem 17142 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}):𝒫 𝑋⟶𝐶) | |
2 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
3 | 2 | mrcfval 17144 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) |
4 | 3 | feq1d 6552 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹:𝒫 𝑋⟶𝐶 ↔ (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}):𝒫 𝑋⟶𝐶)) |
5 | 1, 4 | mpbird 260 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 {crab 3068 ⊆ wss 3883 𝒫 cpw 4530 ∩ cint 4876 ↦ cmpt 5152 ⟶wf 6397 ‘cfv 6401 Moorecmre 17118 mrClscmrc 17119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5472 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-fv 6409 df-mre 17122 df-mrc 17123 |
This theorem is referenced by: mrccl 17147 mrcssv 17150 mrcuni 17157 mrcun 17158 isacs2 17189 isacs4lem 18083 isacs5 18087 ismrcd2 40272 ismrc 40274 isnacs2 40279 isnacs3 40283 |
Copyright terms: Public domain | W3C validator |