Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulvfn | Structured version Visualization version GIF version |
Description: Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
mulvfn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) Fn ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7305 | . . 3 ⊢ (𝐴 · (𝐵‘𝑥)) ∈ V | |
2 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) | |
3 | 1, 2 | fnmpti 6574 | . 2 ⊢ (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) Fn ℝ |
4 | mulvval 42068 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥)))) | |
5 | 4 | fneq1d 6524 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐴.𝑣𝐵) Fn ℝ ↔ (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) Fn ℝ)) |
6 | 3, 5 | mpbiri 257 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) Fn ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ↦ cmpt 5162 Fn wfn 6427 ‘cfv 6432 (class class class)co 7272 ℝcr 10881 · cmul 10887 .𝑣ctimesr 42059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-cnex 10938 ax-resscn 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-mulv 42065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |