| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mulvfn | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| Ref | Expression |
|---|---|
| mulvfn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) Fn ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7420 | . . 3 ⊢ (𝐴 · (𝐵‘𝑥)) ∈ V | |
| 2 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) | |
| 3 | 1, 2 | fnmpti 6661 | . 2 ⊢ (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) Fn ℝ |
| 4 | mulvval 44457 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥)))) | |
| 5 | 4 | fneq1d 6611 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐴.𝑣𝐵) Fn ℝ ↔ (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) Fn ℝ)) |
| 6 | 3, 5 | mpbiri 258 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) Fn ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ↦ cmpt 5188 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 · cmul 11073 .𝑣ctimesr 44448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-mulv 44454 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |