| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mulvval | Structured version Visualization version GIF version | ||
| Description: Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| Ref | Expression |
|---|---|
| mulvval | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 3485 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 3 | fveq1 6886 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦‘𝑣) = (𝐵‘𝑣)) | |
| 4 | oveq12 7423 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ (𝑦‘𝑣) = (𝐵‘𝑣)) → (𝑥 · (𝑦‘𝑣)) = (𝐴 · (𝐵‘𝑣))) | |
| 5 | 3, 4 | sylan2 593 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 · (𝑦‘𝑣)) = (𝐴 · (𝐵‘𝑣))) |
| 6 | 5 | mpteq2dv 5226 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣))) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
| 7 | df-mulv 44429 | . . 3 ⊢ .𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣)))) | |
| 8 | reex 11229 | . . . 4 ⊢ ℝ ∈ V | |
| 9 | 8 | mptex 7226 | . . 3 ⊢ (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣))) ∈ V |
| 10 | 6, 7, 9 | ovmpoa 7571 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
| 11 | 1, 2, 10 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 ℝcr 11137 · cmul 11143 .𝑣ctimesr 44423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-cnex 11194 ax-resscn 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-mulv 44429 |
| This theorem is referenced by: mulvfv 44435 mulvfn 44438 |
| Copyright terms: Public domain | W3C validator |