Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulvval Structured version   Visualization version   GIF version

Theorem mulvval 43784
Description: Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
mulvval ((๐ด โˆˆ ๐ถ โˆง ๐ต โˆˆ ๐ท) โ†’ (๐ด.๐‘ฃ๐ต) = (๐‘ฃ โˆˆ โ„ โ†ฆ (๐ด ยท (๐ตโ€˜๐‘ฃ))))
Distinct variable groups:   ๐‘ฃ,๐ด   ๐‘ฃ,๐ต
Allowed substitution hints:   ๐ถ(๐‘ฃ)   ๐ท(๐‘ฃ)

Proof of Theorem mulvval
Dummy variables ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3487 . 2 (๐ด โˆˆ ๐ถ โ†’ ๐ด โˆˆ V)
2 elex 3487 . 2 (๐ต โˆˆ ๐ท โ†’ ๐ต โˆˆ V)
3 fveq1 6883 . . . . 5 (๐‘ฆ = ๐ต โ†’ (๐‘ฆโ€˜๐‘ฃ) = (๐ตโ€˜๐‘ฃ))
4 oveq12 7413 . . . . 5 ((๐‘ฅ = ๐ด โˆง (๐‘ฆโ€˜๐‘ฃ) = (๐ตโ€˜๐‘ฃ)) โ†’ (๐‘ฅ ยท (๐‘ฆโ€˜๐‘ฃ)) = (๐ด ยท (๐ตโ€˜๐‘ฃ)))
53, 4sylan2 592 . . . 4 ((๐‘ฅ = ๐ด โˆง ๐‘ฆ = ๐ต) โ†’ (๐‘ฅ ยท (๐‘ฆโ€˜๐‘ฃ)) = (๐ด ยท (๐ตโ€˜๐‘ฃ)))
65mpteq2dv 5243 . . 3 ((๐‘ฅ = ๐ด โˆง ๐‘ฆ = ๐ต) โ†’ (๐‘ฃ โˆˆ โ„ โ†ฆ (๐‘ฅ ยท (๐‘ฆโ€˜๐‘ฃ))) = (๐‘ฃ โˆˆ โ„ โ†ฆ (๐ด ยท (๐ตโ€˜๐‘ฃ))))
7 df-mulv 43781 . . 3 .๐‘ฃ = (๐‘ฅ โˆˆ V, ๐‘ฆ โˆˆ V โ†ฆ (๐‘ฃ โˆˆ โ„ โ†ฆ (๐‘ฅ ยท (๐‘ฆโ€˜๐‘ฃ))))
8 reex 11200 . . . 4 โ„ โˆˆ V
98mptex 7219 . . 3 (๐‘ฃ โˆˆ โ„ โ†ฆ (๐ด ยท (๐ตโ€˜๐‘ฃ))) โˆˆ V
106, 7, 9ovmpoa 7558 . 2 ((๐ด โˆˆ V โˆง ๐ต โˆˆ V) โ†’ (๐ด.๐‘ฃ๐ต) = (๐‘ฃ โˆˆ โ„ โ†ฆ (๐ด ยท (๐ตโ€˜๐‘ฃ))))
111, 2, 10syl2an 595 1 ((๐ด โˆˆ ๐ถ โˆง ๐ต โˆˆ ๐ท) โ†’ (๐ด.๐‘ฃ๐ต) = (๐‘ฃ โˆˆ โ„ โ†ฆ (๐ด ยท (๐ตโ€˜๐‘ฃ))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098  Vcvv 3468   โ†ฆ cmpt 5224  โ€˜cfv 6536  (class class class)co 7404  โ„cr 11108   ยท cmul 11114  .๐‘ฃctimesr 43775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-cnex 11165  ax-resscn 11166
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-mulv 43781
This theorem is referenced by:  mulvfv  43787  mulvfn  43790
  Copyright terms: Public domain W3C validator