| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mulvval | Structured version Visualization version GIF version | ||
| Description: Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| Ref | Expression |
|---|---|
| mulvval | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 3457 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 3 | fveq1 6821 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦‘𝑣) = (𝐵‘𝑣)) | |
| 4 | oveq12 7355 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ (𝑦‘𝑣) = (𝐵‘𝑣)) → (𝑥 · (𝑦‘𝑣)) = (𝐴 · (𝐵‘𝑣))) | |
| 5 | 3, 4 | sylan2 593 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 · (𝑦‘𝑣)) = (𝐴 · (𝐵‘𝑣))) |
| 6 | 5 | mpteq2dv 5183 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣))) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
| 7 | df-mulv 44556 | . . 3 ⊢ .𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣)))) | |
| 8 | reex 11097 | . . . 4 ⊢ ℝ ∈ V | |
| 9 | 8 | mptex 7157 | . . 3 ⊢ (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣))) ∈ V |
| 10 | 6, 7, 9 | ovmpoa 7501 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
| 11 | 1, 2, 10 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 · cmul 11011 .𝑣ctimesr 44550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-mulv 44556 |
| This theorem is referenced by: mulvfv 44562 mulvfn 44565 |
| Copyright terms: Public domain | W3C validator |