Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > subrfn | Structured version Visualization version GIF version |
Description: Vector subtraction produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
subrfn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) Fn ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7267 | . . 3 ⊢ ((𝐴‘𝑥) − (𝐵‘𝑥)) ∈ V | |
2 | eqid 2739 | . . 3 ⊢ (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥))) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥))) | |
3 | 1, 2 | fnmpti 6542 | . 2 ⊢ (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥))) Fn ℝ |
4 | subrval 41805 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥)))) | |
5 | 4 | fneq1d 6492 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐴-𝑟𝐵) Fn ℝ ↔ (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥))) Fn ℝ)) |
6 | 3, 5 | mpbiri 261 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) Fn ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2112 ↦ cmpt 5151 Fn wfn 6395 ‘cfv 6400 (class class class)co 7234 ℝcr 10757 − cmin 11091 -𝑟cminusr 41796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pr 5338 ax-cnex 10814 ax-resscn 10815 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4456 df-sn 4558 df-pr 4560 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-id 5471 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-ov 7237 df-oprab 7238 df-mpo 7239 df-subr 41802 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |