Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrfn Structured version   Visualization version   GIF version

Theorem subrfn 41811
Description: Vector subtraction produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
subrfn ((𝐴𝐶𝐵𝐷) → (𝐴-𝑟𝐵) Fn ℝ)

Proof of Theorem subrfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7267 . . 3 ((𝐴𝑥) − (𝐵𝑥)) ∈ V
2 eqid 2739 . . 3 (𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥))) = (𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥)))
31, 2fnmpti 6542 . 2 (𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥))) Fn ℝ
4 subrval 41805 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴-𝑟𝐵) = (𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥))))
54fneq1d 6492 . 2 ((𝐴𝐶𝐵𝐷) → ((𝐴-𝑟𝐵) Fn ℝ ↔ (𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥))) Fn ℝ))
63, 5mpbiri 261 1 ((𝐴𝐶𝐵𝐷) → (𝐴-𝑟𝐵) Fn ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  cmpt 5151   Fn wfn 6395  cfv 6400  (class class class)co 7234  cr 10757  cmin 11091  -𝑟cminusr 41796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pr 5338  ax-cnex 10814  ax-resscn 10815
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4456  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4836  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-id 5471  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-ov 7237  df-oprab 7238  df-mpo 7239  df-subr 41802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator