| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplgr2vpr | Structured version Visualization version GIF version | ||
| Description: An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Proof shortened by Alexander van der Vekens, 16-Dec-2017.) (Revised by AV, 3-Nov-2020.) |
| Ref | Expression |
|---|---|
| cplgr0v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| cplgr2v.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| cplgr2vpr | ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ ComplGraph ↔ {𝐴, 𝐵} ∈ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵}) → 𝐺 ∈ UHGraph) | |
| 2 | fveq2 6858 | . . . . 5 ⊢ (𝑉 = {𝐴, 𝐵} → (♯‘𝑉) = (♯‘{𝐴, 𝐵})) | |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵}) → (♯‘𝑉) = (♯‘{𝐴, 𝐵})) |
| 4 | elex 3468 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ V) | |
| 5 | elex 3468 | . . . . 5 ⊢ (𝐵 ∈ 𝑌 → 𝐵 ∈ V) | |
| 6 | id 22 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
| 7 | hashprb 14362 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) ↔ (♯‘{𝐴, 𝐵}) = 2) | |
| 8 | 7 | biimpi 216 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → (♯‘{𝐴, 𝐵}) = 2) |
| 9 | 4, 5, 6, 8 | syl3an 1160 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → (♯‘{𝐴, 𝐵}) = 2) |
| 10 | 3, 9 | sylan9eqr 2786 | . . 3 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (♯‘𝑉) = 2) |
| 11 | cplgr0v.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 12 | cplgr2v.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 13 | 11, 12 | cplgr2v 29359 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝐺 ∈ ComplGraph ↔ 𝑉 ∈ 𝐸)) |
| 14 | 1, 10, 13 | syl2an2 686 | . 2 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ ComplGraph ↔ 𝑉 ∈ 𝐸)) |
| 15 | simprr 772 | . . 3 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → 𝑉 = {𝐴, 𝐵}) | |
| 16 | 15 | eleq1d 2813 | . 2 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (𝑉 ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸)) |
| 17 | 14, 16 | bitrd 279 | 1 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ ComplGraph ↔ {𝐴, 𝐵} ∈ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 {cpr 4591 ‘cfv 6511 2c2 12241 ♯chash 14295 Vtxcvtx 28923 Edgcedg 28974 UHGraphcuhgr 28983 ComplGraphccplgr 29336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 df-edg 28975 df-uhgr 28985 df-nbgr 29260 df-uvtx 29313 df-cplgr 29338 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |