![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbumgr | Structured version Visualization version GIF version |
Description: The set of neighbors of an arbitrary class in a multigraph. (Contributed by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
nbuhgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbuhgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
nbumgr | ⊢ (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbuhgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | nbuhgr.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | nbumgrvtx 29172 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
4 | 3 | expcom 413 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})) |
5 | df-nel 3044 | . . . . . 6 ⊢ (𝑁 ∉ 𝑉 ↔ ¬ 𝑁 ∈ 𝑉) | |
6 | 1 | nbgrnvtx0 29165 | . . . . . 6 ⊢ (𝑁 ∉ 𝑉 → (𝐺 NeighbVtx 𝑁) = ∅) |
7 | 5, 6 | sylbir 234 | . . . . 5 ⊢ (¬ 𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = ∅) |
8 | 7 | adantr 480 | . . . 4 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (𝐺 NeighbVtx 𝑁) = ∅) |
9 | 1, 2 | umgrpredgv 28966 | . . . . . . . . . . . . 13 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑛} ∈ 𝐸) → (𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) |
10 | 9 | simpld 494 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑛} ∈ 𝐸) → 𝑁 ∈ 𝑉) |
11 | 10 | ex 412 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ UMGraph → ({𝑁, 𝑛} ∈ 𝐸 → 𝑁 ∈ 𝑉)) |
12 | 11 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → ({𝑁, 𝑛} ∈ 𝐸 → 𝑁 ∈ 𝑉)) |
13 | 12 | con3d 152 | . . . . . . . . 9 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (¬ 𝑁 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸)) |
14 | 13 | ex 412 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑉 → (𝐺 ∈ UMGraph → (¬ 𝑁 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸))) |
15 | 14 | com13 88 | . . . . . . 7 ⊢ (¬ 𝑁 ∈ 𝑉 → (𝐺 ∈ UMGraph → (𝑛 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸))) |
16 | 15 | imp 406 | . . . . . 6 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (𝑛 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸)) |
17 | 16 | ralrimiv 3142 | . . . . 5 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → ∀𝑛 ∈ 𝑉 ¬ {𝑁, 𝑛} ∈ 𝐸) |
18 | rabeq0 4385 | . . . . 5 ⊢ ({𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} = ∅ ↔ ∀𝑛 ∈ 𝑉 ¬ {𝑁, 𝑛} ∈ 𝐸) | |
19 | 17, 18 | sylibr 233 | . . . 4 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} = ∅) |
20 | 8, 19 | eqtr4d 2771 | . . 3 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
21 | 20 | ex 412 | . 2 ⊢ (¬ 𝑁 ∈ 𝑉 → (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})) |
22 | 4, 21 | pm2.61i 182 | 1 ⊢ (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∉ wnel 3043 ∀wral 3058 {crab 3429 ∅c0 4323 {cpr 4631 ‘cfv 6548 (class class class)co 7420 Vtxcvtx 28822 Edgcedg 28873 UMGraphcumgr 28907 NeighbVtx cnbgr 29158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-n0 12504 df-xnn0 12576 df-z 12590 df-uz 12854 df-fz 13518 df-hash 14323 df-edg 28874 df-upgr 28908 df-umgr 28909 df-nbgr 29159 |
This theorem is referenced by: nbusgr 29175 |
Copyright terms: Public domain | W3C validator |