Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbumgr | Structured version Visualization version GIF version |
Description: The set of neighbors of an arbitrary class in a multigraph. (Contributed by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
nbuhgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbuhgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
nbumgr | ⊢ (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbuhgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | nbuhgr.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | nbumgrvtx 27434 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
4 | 3 | expcom 417 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})) |
5 | df-nel 3047 | . . . . . 6 ⊢ (𝑁 ∉ 𝑉 ↔ ¬ 𝑁 ∈ 𝑉) | |
6 | 1 | nbgrnvtx0 27427 | . . . . . 6 ⊢ (𝑁 ∉ 𝑉 → (𝐺 NeighbVtx 𝑁) = ∅) |
7 | 5, 6 | sylbir 238 | . . . . 5 ⊢ (¬ 𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = ∅) |
8 | 7 | adantr 484 | . . . 4 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (𝐺 NeighbVtx 𝑁) = ∅) |
9 | 1, 2 | umgrpredgv 27231 | . . . . . . . . . . . . 13 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑛} ∈ 𝐸) → (𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) |
10 | 9 | simpld 498 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑛} ∈ 𝐸) → 𝑁 ∈ 𝑉) |
11 | 10 | ex 416 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ UMGraph → ({𝑁, 𝑛} ∈ 𝐸 → 𝑁 ∈ 𝑉)) |
12 | 11 | adantl 485 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → ({𝑁, 𝑛} ∈ 𝐸 → 𝑁 ∈ 𝑉)) |
13 | 12 | con3d 155 | . . . . . . . . 9 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (¬ 𝑁 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸)) |
14 | 13 | ex 416 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑉 → (𝐺 ∈ UMGraph → (¬ 𝑁 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸))) |
15 | 14 | com13 88 | . . . . . . 7 ⊢ (¬ 𝑁 ∈ 𝑉 → (𝐺 ∈ UMGraph → (𝑛 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸))) |
16 | 15 | imp 410 | . . . . . 6 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (𝑛 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸)) |
17 | 16 | ralrimiv 3104 | . . . . 5 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → ∀𝑛 ∈ 𝑉 ¬ {𝑁, 𝑛} ∈ 𝐸) |
18 | rabeq0 4299 | . . . . 5 ⊢ ({𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} = ∅ ↔ ∀𝑛 ∈ 𝑉 ¬ {𝑁, 𝑛} ∈ 𝐸) | |
19 | 17, 18 | sylibr 237 | . . . 4 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} = ∅) |
20 | 8, 19 | eqtr4d 2780 | . . 3 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
21 | 20 | ex 416 | . 2 ⊢ (¬ 𝑁 ∈ 𝑉 → (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})) |
22 | 4, 21 | pm2.61i 185 | 1 ⊢ (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∉ wnel 3046 ∀wral 3061 {crab 3065 ∅c0 4237 {cpr 4543 ‘cfv 6380 (class class class)co 7213 Vtxcvtx 27087 Edgcedg 27138 UMGraphcumgr 27172 NeighbVtx cnbgr 27420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-oadd 8206 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-dju 9517 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-xnn0 12163 df-z 12177 df-uz 12439 df-fz 13096 df-hash 13897 df-edg 27139 df-upgr 27173 df-umgr 27174 df-nbgr 27421 |
This theorem is referenced by: nbusgr 27437 |
Copyright terms: Public domain | W3C validator |