Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbumgr | Structured version Visualization version GIF version |
Description: The set of neighbors of an arbitrary class in a multigraph. (Contributed by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
nbuhgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbuhgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
nbumgr | ⊢ (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbuhgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | nbuhgr.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | nbumgrvtx 27758 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
4 | 3 | expcom 415 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})) |
5 | df-nel 3048 | . . . . . 6 ⊢ (𝑁 ∉ 𝑉 ↔ ¬ 𝑁 ∈ 𝑉) | |
6 | 1 | nbgrnvtx0 27751 | . . . . . 6 ⊢ (𝑁 ∉ 𝑉 → (𝐺 NeighbVtx 𝑁) = ∅) |
7 | 5, 6 | sylbir 234 | . . . . 5 ⊢ (¬ 𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = ∅) |
8 | 7 | adantr 482 | . . . 4 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (𝐺 NeighbVtx 𝑁) = ∅) |
9 | 1, 2 | umgrpredgv 27555 | . . . . . . . . . . . . 13 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑛} ∈ 𝐸) → (𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) |
10 | 9 | simpld 496 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑛} ∈ 𝐸) → 𝑁 ∈ 𝑉) |
11 | 10 | ex 414 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ UMGraph → ({𝑁, 𝑛} ∈ 𝐸 → 𝑁 ∈ 𝑉)) |
12 | 11 | adantl 483 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → ({𝑁, 𝑛} ∈ 𝐸 → 𝑁 ∈ 𝑉)) |
13 | 12 | con3d 152 | . . . . . . . . 9 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (¬ 𝑁 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸)) |
14 | 13 | ex 414 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑉 → (𝐺 ∈ UMGraph → (¬ 𝑁 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸))) |
15 | 14 | com13 88 | . . . . . . 7 ⊢ (¬ 𝑁 ∈ 𝑉 → (𝐺 ∈ UMGraph → (𝑛 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸))) |
16 | 15 | imp 408 | . . . . . 6 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (𝑛 ∈ 𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸)) |
17 | 16 | ralrimiv 3139 | . . . . 5 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → ∀𝑛 ∈ 𝑉 ¬ {𝑁, 𝑛} ∈ 𝐸) |
18 | rabeq0 4324 | . . . . 5 ⊢ ({𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} = ∅ ↔ ∀𝑛 ∈ 𝑉 ¬ {𝑁, 𝑛} ∈ 𝐸) | |
19 | 17, 18 | sylibr 233 | . . . 4 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} = ∅) |
20 | 8, 19 | eqtr4d 2779 | . . 3 ⊢ ((¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
21 | 20 | ex 414 | . 2 ⊢ (¬ 𝑁 ∈ 𝑉 → (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})) |
22 | 4, 21 | pm2.61i 182 | 1 ⊢ (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∉ wnel 3047 ∀wral 3062 {crab 3284 ∅c0 4262 {cpr 4567 ‘cfv 6458 (class class class)co 7307 Vtxcvtx 27411 Edgcedg 27462 UMGraphcumgr 27496 NeighbVtx cnbgr 27744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-oadd 8332 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-n0 12280 df-xnn0 12352 df-z 12366 df-uz 12629 df-fz 13286 df-hash 14091 df-edg 27463 df-upgr 27497 df-umgr 27498 df-nbgr 27745 |
This theorem is referenced by: nbusgr 27761 |
Copyright terms: Public domain | W3C validator |