MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbumgr Structured version   Visualization version   GIF version

Theorem nbumgr 29364
Description: The set of neighbors of an arbitrary class in a multigraph. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
nbuhgr.v 𝑉 = (Vtx‘𝐺)
nbuhgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbumgr (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉   𝑛,𝐸

Proof of Theorem nbumgr
StepHypRef Expression
1 nbuhgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbuhgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbumgrvtx 29363 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
43expcom 413 . 2 (𝑁𝑉 → (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}))
5 df-nel 3047 . . . . . 6 (𝑁𝑉 ↔ ¬ 𝑁𝑉)
61nbgrnvtx0 29356 . . . . . 6 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = ∅)
75, 6sylbir 235 . . . . 5 𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = ∅)
87adantr 480 . . . 4 ((¬ 𝑁𝑉𝐺 ∈ UMGraph) → (𝐺 NeighbVtx 𝑁) = ∅)
91, 2umgrpredgv 29157 . . . . . . . . . . . . 13 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑛} ∈ 𝐸) → (𝑁𝑉𝑛𝑉))
109simpld 494 . . . . . . . . . . . 12 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑛} ∈ 𝐸) → 𝑁𝑉)
1110ex 412 . . . . . . . . . . 11 (𝐺 ∈ UMGraph → ({𝑁, 𝑛} ∈ 𝐸𝑁𝑉))
1211adantl 481 . . . . . . . . . 10 ((𝑛𝑉𝐺 ∈ UMGraph) → ({𝑁, 𝑛} ∈ 𝐸𝑁𝑉))
1312con3d 152 . . . . . . . . 9 ((𝑛𝑉𝐺 ∈ UMGraph) → (¬ 𝑁𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸))
1413ex 412 . . . . . . . 8 (𝑛𝑉 → (𝐺 ∈ UMGraph → (¬ 𝑁𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸)))
1514com13 88 . . . . . . 7 𝑁𝑉 → (𝐺 ∈ UMGraph → (𝑛𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸)))
1615imp 406 . . . . . 6 ((¬ 𝑁𝑉𝐺 ∈ UMGraph) → (𝑛𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸))
1716ralrimiv 3145 . . . . 5 ((¬ 𝑁𝑉𝐺 ∈ UMGraph) → ∀𝑛𝑉 ¬ {𝑁, 𝑛} ∈ 𝐸)
18 rabeq0 4388 . . . . 5 ({𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} = ∅ ↔ ∀𝑛𝑉 ¬ {𝑁, 𝑛} ∈ 𝐸)
1917, 18sylibr 234 . . . 4 ((¬ 𝑁𝑉𝐺 ∈ UMGraph) → {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} = ∅)
208, 19eqtr4d 2780 . . 3 ((¬ 𝑁𝑉𝐺 ∈ UMGraph) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
2120ex 412 . 2 𝑁𝑉 → (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}))
224, 21pm2.61i 182 1 (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wnel 3046  wral 3061  {crab 3436  c0 4333  {cpr 4628  cfv 6561  (class class class)co 7431  Vtxcvtx 29013  Edgcedg 29064  UMGraphcumgr 29098   NeighbVtx cnbgr 29349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-edg 29065  df-upgr 29099  df-umgr 29100  df-nbgr 29350
This theorem is referenced by:  nbusgr  29366
  Copyright terms: Public domain W3C validator