MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ne0p Structured version   Visualization version   GIF version

Theorem ne0p 26201
Description: A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
ne0p ((𝐴 ∈ ℂ ∧ (𝐹𝐴) ≠ 0) → 𝐹 ≠ 0𝑝)

Proof of Theorem ne0p
StepHypRef Expression
1 0pval 25661 . . . 4 (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)
2 fveq1 6886 . . . . 5 (𝐹 = 0𝑝 → (𝐹𝐴) = (0𝑝𝐴))
32eqeq1d 2736 . . . 4 (𝐹 = 0𝑝 → ((𝐹𝐴) = 0 ↔ (0𝑝𝐴) = 0))
41, 3syl5ibrcom 247 . . 3 (𝐴 ∈ ℂ → (𝐹 = 0𝑝 → (𝐹𝐴) = 0))
54necon3d 2952 . 2 (𝐴 ∈ ℂ → ((𝐹𝐴) ≠ 0 → 𝐹 ≠ 0𝑝))
65imp 406 1 ((𝐴 ∈ ℂ ∧ (𝐹𝐴) ≠ 0) → 𝐹 ≠ 0𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  cfv 6542  cc 11136  0cc0 11138  0𝑝c0p 25659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-mulcl 11200  ax-i2m1 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-0p 25660
This theorem is referenced by:  dgrmulc  26266  qaa  26320  iaa  26322  aareccl  26323  dchrfi  27254
  Copyright terms: Public domain W3C validator