| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ne0p | Structured version Visualization version GIF version | ||
| Description: A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| Ref | Expression |
|---|---|
| ne0p | ⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pval 25572 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | |
| 2 | fveq1 6857 | . . . . 5 ⊢ (𝐹 = 0𝑝 → (𝐹‘𝐴) = (0𝑝‘𝐴)) | |
| 3 | 2 | eqeq1d 2731 | . . . 4 ⊢ (𝐹 = 0𝑝 → ((𝐹‘𝐴) = 0 ↔ (0𝑝‘𝐴) = 0)) |
| 4 | 1, 3 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐹 = 0𝑝 → (𝐹‘𝐴) = 0)) |
| 5 | 4 | necon3d 2946 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐹‘𝐴) ≠ 0 → 𝐹 ≠ 0𝑝)) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 ℂcc 11066 0cc0 11068 0𝑝c0p 25570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-0p 25571 |
| This theorem is referenced by: dgrmulc 26177 qaa 26231 iaa 26233 aareccl 26234 dchrfi 27166 cjnpoly 46890 |
| Copyright terms: Public domain | W3C validator |