MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ne0p Structured version   Visualization version   GIF version

Theorem ne0p 25957
Description: A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
ne0p ((𝐴 ∈ ℂ ∧ (𝐹𝐴) ≠ 0) → 𝐹 ≠ 0𝑝)

Proof of Theorem ne0p
StepHypRef Expression
1 0pval 25421 . . . 4 (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)
2 fveq1 6890 . . . . 5 (𝐹 = 0𝑝 → (𝐹𝐴) = (0𝑝𝐴))
32eqeq1d 2733 . . . 4 (𝐹 = 0𝑝 → ((𝐹𝐴) = 0 ↔ (0𝑝𝐴) = 0))
41, 3syl5ibrcom 246 . . 3 (𝐴 ∈ ℂ → (𝐹 = 0𝑝 → (𝐹𝐴) = 0))
54necon3d 2960 . 2 (𝐴 ∈ ℂ → ((𝐹𝐴) ≠ 0 → 𝐹 ≠ 0𝑝))
65imp 406 1 ((𝐴 ∈ ℂ ∧ (𝐹𝐴) ≠ 0) → 𝐹 ≠ 0𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  cfv 6543  cc 11112  0cc0 11114  0𝑝c0p 25419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-mulcl 11176  ax-i2m1 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-0p 25420
This theorem is referenced by:  dgrmulc  26022  qaa  26073  iaa  26075  aareccl  26076  dchrfi  26995
  Copyright terms: Public domain W3C validator