| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ne0p | Structured version Visualization version GIF version | ||
| Description: A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| Ref | Expression |
|---|---|
| ne0p | ⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pval 25605 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | |
| 2 | fveq1 6827 | . . . . 5 ⊢ (𝐹 = 0𝑝 → (𝐹‘𝐴) = (0𝑝‘𝐴)) | |
| 3 | 2 | eqeq1d 2733 | . . . 4 ⊢ (𝐹 = 0𝑝 → ((𝐹‘𝐴) = 0 ↔ (0𝑝‘𝐴) = 0)) |
| 4 | 1, 3 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐹 = 0𝑝 → (𝐹‘𝐴) = 0)) |
| 5 | 4 | necon3d 2949 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐹‘𝐴) ≠ 0 → 𝐹 ≠ 0𝑝)) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6487 ℂcc 11010 0cc0 11012 0𝑝c0p 25603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-mulcl 11074 ax-i2m1 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fv 6495 df-0p 25604 |
| This theorem is referenced by: dgrmulc 26210 qaa 26264 iaa 26266 aareccl 26267 dchrfi 27199 nthrucw 46989 cjnpoly 46994 |
| Copyright terms: Public domain | W3C validator |