MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ne0p Structured version   Visualization version   GIF version

Theorem ne0p 25273
Description: A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
ne0p ((𝐴 ∈ ℂ ∧ (𝐹𝐴) ≠ 0) → 𝐹 ≠ 0𝑝)

Proof of Theorem ne0p
StepHypRef Expression
1 0pval 24740 . . . 4 (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)
2 fveq1 6755 . . . . 5 (𝐹 = 0𝑝 → (𝐹𝐴) = (0𝑝𝐴))
32eqeq1d 2740 . . . 4 (𝐹 = 0𝑝 → ((𝐹𝐴) = 0 ↔ (0𝑝𝐴) = 0))
41, 3syl5ibrcom 246 . . 3 (𝐴 ∈ ℂ → (𝐹 = 0𝑝 → (𝐹𝐴) = 0))
54necon3d 2963 . 2 (𝐴 ∈ ℂ → ((𝐹𝐴) ≠ 0 → 𝐹 ≠ 0𝑝))
65imp 406 1 ((𝐴 ∈ ℂ ∧ (𝐹𝐴) ≠ 0) → 𝐹 ≠ 0𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cfv 6418  cc 10800  0cc0 10802  0𝑝c0p 24738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-i2m1 10870
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-0p 24739
This theorem is referenced by:  dgrmulc  25337  qaa  25388  iaa  25390  aareccl  25391  dchrfi  26308
  Copyright terms: Public domain W3C validator