Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ne0p | Structured version Visualization version GIF version |
Description: A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.) |
Ref | Expression |
---|---|
ne0p | ⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pval 24740 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | |
2 | fveq1 6755 | . . . . 5 ⊢ (𝐹 = 0𝑝 → (𝐹‘𝐴) = (0𝑝‘𝐴)) | |
3 | 2 | eqeq1d 2740 | . . . 4 ⊢ (𝐹 = 0𝑝 → ((𝐹‘𝐴) = 0 ↔ (0𝑝‘𝐴) = 0)) |
4 | 1, 3 | syl5ibrcom 246 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐹 = 0𝑝 → (𝐹‘𝐴) = 0)) |
5 | 4 | necon3d 2963 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐹‘𝐴) ≠ 0 → 𝐹 ≠ 0𝑝)) |
6 | 5 | imp 406 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 ℂcc 10800 0cc0 10802 0𝑝c0p 24738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-0p 24739 |
This theorem is referenced by: dgrmulc 25337 qaa 25388 iaa 25390 aareccl 25391 dchrfi 26308 |
Copyright terms: Public domain | W3C validator |