![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ne0p | Structured version Visualization version GIF version |
Description: A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.) |
Ref | Expression |
---|---|
ne0p | ⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pval 25720 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | |
2 | fveq1 6906 | . . . . 5 ⊢ (𝐹 = 0𝑝 → (𝐹‘𝐴) = (0𝑝‘𝐴)) | |
3 | 2 | eqeq1d 2737 | . . . 4 ⊢ (𝐹 = 0𝑝 → ((𝐹‘𝐴) = 0 ↔ (0𝑝‘𝐴) = 0)) |
4 | 1, 3 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐹 = 0𝑝 → (𝐹‘𝐴) = 0)) |
5 | 4 | necon3d 2959 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐹‘𝐴) ≠ 0 → 𝐹 ≠ 0𝑝)) |
6 | 5 | imp 406 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 ℂcc 11151 0cc0 11153 0𝑝c0p 25718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-i2m1 11221 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-0p 25719 |
This theorem is referenced by: dgrmulc 26326 qaa 26380 iaa 26382 aareccl 26383 dchrfi 27314 |
Copyright terms: Public domain | W3C validator |