MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyconst Structured version   Visualization version   GIF version

Theorem plyconst 26148
Description: A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyconst ((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆))

Proof of Theorem plyconst
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 exp0 13982 . . . . . . 7 (𝑧 ∈ ℂ → (𝑧↑0) = 1)
21adantl 481 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆) ∧ 𝑧 ∈ ℂ) → (𝑧↑0) = 1)
32oveq2d 7371 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆) ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) = (𝐴 · 1))
4 ssel2 3926 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → 𝐴 ∈ ℂ)
54adantr 480 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆) ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
65mulridd 11139 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆) ∧ 𝑧 ∈ ℂ) → (𝐴 · 1) = 𝐴)
73, 6eqtrd 2768 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆) ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) = 𝐴)
87mpteq2dva 5188 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑0))) = (𝑧 ∈ ℂ ↦ 𝐴))
9 fconstmpt 5683 . . 3 (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴)
108, 9eqtr4di 2786 . 2 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑0))) = (ℂ × {𝐴}))
11 0nn0 12406 . . 3 0 ∈ ℕ0
12 eqid 2733 . . . 4 (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑0))) = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑0)))
1312ply1term 26146 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆 ∧ 0 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑0))) ∈ (Poly‘𝑆))
1411, 13mp3an3 1452 . 2 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑0))) ∈ (Poly‘𝑆))
1510, 14eqeltrrd 2834 1 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3899  {csn 4577  cmpt 5176   × cxp 5619  cfv 6489  (class class class)co 7355  cc 11014  0cc0 11016  1c1 11017   · cmul 11021  0cn0 12391  cexp 13978  Polycply 26126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-z 12479  df-uz 12743  df-rp 12901  df-fz 13418  df-fzo 13565  df-seq 13919  df-exp 13979  df-hash 14248  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-clim 15405  df-sum 15604  df-ply 26130
This theorem is referenced by:  ply0  26150  plysub  26161  plyco  26183  0dgr  26187  coemulc  26197  coesub  26199  dgrmulc  26214  dgrsub  26215  plyremlem  26249  fta1lem  26252  vieta1lem2  26256  qaa  26268  iaa  26270  taylply2  26312  taylply2OLD  26313  dchrfi  27203  mpaaeu  43257  rngunsnply  43276  nthrucw  46998  cjnpoly  47003
  Copyright terms: Public domain W3C validator