| Step | Hyp | Ref
| Expression |
| 1 | | elaa 26281 |
. . . 4
⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧
∃𝑓 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
| 2 | 1 | simprbi 496 |
. . 3
⊢ (𝐴 ∈ 𝔸 →
∃𝑓 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) |
| 3 | 2 | adantr 480 |
. 2
⊢ ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → ∃𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝})(𝑓‘𝐴) = 0) |
| 4 | | aacn 26282 |
. . . . 5
⊢ (𝐴 ∈ 𝔸 → 𝐴 ∈
ℂ) |
| 5 | | reccl 11908 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
ℂ) |
| 6 | 4, 5 | sylan 580 |
. . . 4
⊢ ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
ℂ) |
| 7 | 6 | adantr 480 |
. . 3
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (1 / 𝐴) ∈ ℂ) |
| 8 | | zsscn 12601 |
. . . . . . 7
⊢ ℤ
⊆ ℂ |
| 9 | 8 | a1i 11 |
. . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ℤ ⊆
ℂ) |
| 10 | | simprl 770 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → 𝑓 ∈ ((Poly‘ℤ) ∖
{0𝑝})) |
| 11 | | eldifsn 4767 |
. . . . . . . . 9
⊢ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ↔ (𝑓 ∈ (Poly‘ℤ) ∧ 𝑓 ≠
0𝑝)) |
| 12 | 10, 11 | sylib 218 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (𝑓 ∈ (Poly‘ℤ) ∧ 𝑓 ≠
0𝑝)) |
| 13 | 12 | simpld 494 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → 𝑓 ∈
(Poly‘ℤ)) |
| 14 | | dgrcl 26195 |
. . . . . . 7
⊢ (𝑓 ∈ (Poly‘ℤ)
→ (deg‘𝑓) ∈
ℕ0) |
| 15 | 13, 14 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (deg‘𝑓) ∈
ℕ0) |
| 16 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑓 ∈
(Poly‘ℤ)) |
| 17 | | 0z 12604 |
. . . . . . . 8
⊢ 0 ∈
ℤ |
| 18 | | eqid 2736 |
. . . . . . . . 9
⊢
(coeff‘𝑓) =
(coeff‘𝑓) |
| 19 | 18 | coef2 26193 |
. . . . . . . 8
⊢ ((𝑓 ∈ (Poly‘ℤ)
∧ 0 ∈ ℤ) → (coeff‘𝑓):ℕ0⟶ℤ) |
| 20 | 16, 17, 19 | sylancl 586 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (coeff‘𝑓):ℕ0⟶ℤ) |
| 21 | | fznn0sub 13578 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(deg‘𝑓)) → ((deg‘𝑓) − 𝑘) ∈
ℕ0) |
| 22 | 21 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((deg‘𝑓) − 𝑘) ∈
ℕ0) |
| 23 | 20, 22 | ffvelcdmd 7080 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) ∈ ℤ) |
| 24 | 9, 15, 23 | elplyd 26164 |
. . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) ∈
(Poly‘ℤ)) |
| 25 | | 0cn 11232 |
. . . . . 6
⊢ 0 ∈
ℂ |
| 26 | | eqid 2736 |
. . . . . . . . . 10
⊢
(coeff‘(𝑧
∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))) = (coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))) |
| 27 | 26 | coefv0 26210 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) ∈ (Poly‘ℤ) →
((𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))‘0) = ((coeff‘(𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))))‘0)) |
| 28 | 24, 27 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))‘0) = ((coeff‘(𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))))‘0)) |
| 29 | 23 | zcnd 12703 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) ∈ ℂ) |
| 30 | | eqidd 2737 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))) |
| 31 | 24, 15, 29, 30 | coeeq2 26204 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (coeff‘(𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))) |
| 32 | 31 | fveq1d 6883 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ((coeff‘(𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0)) |
| 33 | | 0nn0 12521 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
| 34 | | breq1 5127 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → (𝑘 ≤ (deg‘𝑓) ↔ 0 ≤ (deg‘𝑓))) |
| 35 | | oveq2 7418 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → ((deg‘𝑓) − 𝑘) = ((deg‘𝑓) − 0)) |
| 36 | 35 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) = ((coeff‘𝑓)‘((deg‘𝑓) − 0))) |
| 37 | 34, 36 | ifbieq1d 4530 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)),
0)) |
| 38 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
↦ if(𝑘 ≤
(deg‘𝑓),
((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0)) |
| 39 | | fvex 6894 |
. . . . . . . . . . . 12
⊢
((coeff‘𝑓)‘((deg‘𝑓) − 0)) ∈ V |
| 40 | | c0ex 11234 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
| 41 | 39, 40 | ifex 4556 |
. . . . . . . . . . 11
⊢ if(0 ≤
(deg‘𝑓),
((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) ∈ V |
| 42 | 37, 38, 41 | fvmpt 6991 |
. . . . . . . . . 10
⊢ (0 ∈
ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)),
0)) |
| 43 | 33, 42 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
↦ if(𝑘 ≤
(deg‘𝑓),
((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)),
0) |
| 44 | 15 | nn0ge0d 12570 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → 0 ≤ (deg‘𝑓)) |
| 45 | 44 | iftrued 4513 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) =
((coeff‘𝑓)‘((deg‘𝑓) − 0))) |
| 46 | 15 | nn0cnd 12569 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (deg‘𝑓) ∈ ℂ) |
| 47 | 46 | subid1d 11588 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ((deg‘𝑓) − 0) = (deg‘𝑓)) |
| 48 | 47 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ((coeff‘𝑓)‘((deg‘𝑓) − 0)) =
((coeff‘𝑓)‘(deg‘𝑓))) |
| 49 | 45, 48 | eqtrd 2771 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) =
((coeff‘𝑓)‘(deg‘𝑓))) |
| 50 | 43, 49 | eqtrid 2783 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = ((coeff‘𝑓)‘(deg‘𝑓))) |
| 51 | 28, 32, 50 | 3eqtrd 2775 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))‘0) = ((coeff‘𝑓)‘(deg‘𝑓))) |
| 52 | 12 | simprd 495 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → 𝑓 ≠ 0𝑝) |
| 53 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(deg‘𝑓) =
(deg‘𝑓) |
| 54 | 53, 18 | dgreq0 26228 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (Poly‘ℤ)
→ (𝑓 =
0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) = 0)) |
| 55 | 13, 54 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (𝑓 = 0𝑝 ↔
((coeff‘𝑓)‘(deg‘𝑓)) = 0)) |
| 56 | 55 | necon3bid 2977 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (𝑓 ≠ 0𝑝 ↔
((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0)) |
| 57 | 52, 56 | mpbid 232 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0) |
| 58 | 51, 57 | eqnetrd 3000 |
. . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))‘0) ≠ 0) |
| 59 | | ne0p 26169 |
. . . . . 6
⊢ ((0
∈ ℂ ∧ ((𝑧
∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) ≠
0𝑝) |
| 60 | 25, 58, 59 | sylancr 587 |
. . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) ≠
0𝑝) |
| 61 | | eldifsn 4767 |
. . . . 5
⊢ ((𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) ∈ ((Poly‘ℤ) ∖
{0𝑝}) ↔ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) ∈ (Poly‘ℤ) ∧ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) ≠
0𝑝)) |
| 62 | 24, 60, 61 | sylanbrc 583 |
. . . 4
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) ∈ ((Poly‘ℤ) ∖
{0𝑝})) |
| 63 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑧 = (1 / 𝐴) → (𝑧↑𝑘) = ((1 / 𝐴)↑𝑘)) |
| 64 | 63 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑧 = (1 / 𝐴) → (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘))) |
| 65 | 64 | sumeq2sdv 15724 |
. . . . . . 7
⊢ (𝑧 = (1 / 𝐴) → Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘))) |
| 66 | | eqid 2736 |
. . . . . . 7
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) |
| 67 | | sumex 15709 |
. . . . . . 7
⊢
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)) ∈ V |
| 68 | 65, 66, 67 | fvmpt 6991 |
. . . . . 6
⊢ ((1 /
𝐴) ∈ ℂ →
((𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))‘(1 / 𝐴)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘))) |
| 69 | 7, 68 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))‘(1 / 𝐴)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘))) |
| 70 | 18 | coef3 26194 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (Poly‘ℤ)
→ (coeff‘𝑓):ℕ0⟶ℂ) |
| 71 | 13, 70 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (coeff‘𝑓):ℕ0⟶ℂ) |
| 72 | | elfznn0 13642 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...(deg‘𝑓)) → 𝑛 ∈ ℕ0) |
| 73 | | ffvelcdm 7076 |
. . . . . . . . . 10
⊢
(((coeff‘𝑓):ℕ0⟶ℂ ∧
𝑛 ∈
ℕ0) → ((coeff‘𝑓)‘𝑛) ∈ ℂ) |
| 74 | 71, 72, 73 | syl2an 596 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘𝑛) ∈ ℂ) |
| 75 | 4 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → 𝐴 ∈ ℂ) |
| 76 | | expcl 14102 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (𝐴↑𝑛) ∈
ℂ) |
| 77 | 75, 72, 76 | syl2an 596 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴↑𝑛) ∈ ℂ) |
| 78 | 74, 77 | mulcld 11260 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛)) ∈ ℂ) |
| 79 | 75, 15 | expcld 14169 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (𝐴↑(deg‘𝑓)) ∈ ℂ) |
| 80 | 79 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ∈ ℂ) |
| 81 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → 𝐴 ≠ 0) |
| 82 | 15 | nn0zd 12619 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (deg‘𝑓) ∈ ℤ) |
| 83 | 75, 81, 82 | expne0d 14175 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (𝐴↑(deg‘𝑓)) ≠ 0) |
| 84 | 83 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ≠ 0) |
| 85 | 78, 80, 84 | divcld 12022 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛)) / (𝐴↑(deg‘𝑓))) ∈ ℂ) |
| 86 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → ((coeff‘𝑓)‘𝑛) = ((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘))) |
| 87 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → (𝐴↑𝑛) = (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) |
| 88 | 86, 87 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → (((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛)) = (((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘)))) |
| 89 | 88 | oveq1d 7425 |
. . . . . . 7
⊢ (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → ((((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛)) / (𝐴↑(deg‘𝑓))) = ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓)))) |
| 90 | 85, 89 | fsumrev2 15803 |
. . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓)))) |
| 91 | 46 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (deg‘𝑓) ∈ ℂ) |
| 92 | 91 | addlidd 11441 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (0 + (deg‘𝑓)) = (deg‘𝑓)) |
| 93 | 92 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((0 + (deg‘𝑓)) − 𝑘) = ((deg‘𝑓) − 𝑘)) |
| 94 | 93 | fveq2d 6885 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) = ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘))) |
| 95 | 93 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((0 + (deg‘𝑓)) − 𝑘)) = (𝐴↑((deg‘𝑓) − 𝑘))) |
| 96 | 75 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝐴 ∈ ℂ) |
| 97 | 81 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝐴 ≠ 0) |
| 98 | | elfznn0 13642 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...(deg‘𝑓)) → 𝑘 ∈ ℕ0) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑘 ∈ ℕ0) |
| 100 | 99 | nn0zd 12619 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑘 ∈ ℤ) |
| 101 | 82 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (deg‘𝑓) ∈ ℤ) |
| 102 | 96, 97, 100, 101 | expsubd 14180 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((deg‘𝑓) − 𝑘)) = ((𝐴↑(deg‘𝑓)) / (𝐴↑𝑘))) |
| 103 | 95, 102 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((0 + (deg‘𝑓)) − 𝑘)) = ((𝐴↑(deg‘𝑓)) / (𝐴↑𝑘))) |
| 104 | 94, 103 | oveq12d 7428 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴↑𝑘)))) |
| 105 | 104 | oveq1d 7425 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = ((((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴↑𝑘))) / (𝐴↑(deg‘𝑓)))) |
| 106 | 79 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ∈ ℂ) |
| 107 | | expcl 14102 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
| 108 | 75, 98, 107 | syl2an 596 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑𝑘) ∈ ℂ) |
| 109 | 96, 97, 100 | expne0d 14175 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑𝑘) ≠ 0) |
| 110 | 106, 108,
109 | divcld 12022 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((𝐴↑(deg‘𝑓)) / (𝐴↑𝑘)) ∈ ℂ) |
| 111 | 83 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ≠ 0) |
| 112 | 29, 110, 106, 111 | divassd 12057 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴↑𝑘))) / (𝐴↑(deg‘𝑓))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (((𝐴↑(deg‘𝑓)) / (𝐴↑𝑘)) / (𝐴↑(deg‘𝑓))))) |
| 113 | 106, 111 | dividd 12020 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) = 1) |
| 114 | 113 | oveq1d 7425 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) / (𝐴↑𝑘)) = (1 / (𝐴↑𝑘))) |
| 115 | 106, 108,
106, 109, 111 | divdiv32d 12047 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴↑𝑘)) / (𝐴↑(deg‘𝑓))) = (((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) / (𝐴↑𝑘))) |
| 116 | 96, 97, 100 | exprecd 14177 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((1 / 𝐴)↑𝑘) = (1 / (𝐴↑𝑘))) |
| 117 | 114, 115,
116 | 3eqtr4d 2781 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴↑𝑘)) / (𝐴↑(deg‘𝑓))) = ((1 / 𝐴)↑𝑘)) |
| 118 | 117 | oveq2d 7426 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (((𝐴↑(deg‘𝑓)) / (𝐴↑𝑘)) / (𝐴↑(deg‘𝑓)))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘))) |
| 119 | 105, 112,
118 | 3eqtrd 2775 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘))) |
| 120 | 119 | sumeq2dv 15723 |
. . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → Σ𝑘 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘))) |
| 121 | 90, 120 | eqtrd 2771 |
. . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘))) |
| 122 | 18, 53 | coeid2 26201 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (Poly‘ℤ)
∧ 𝐴 ∈ ℂ)
→ (𝑓‘𝐴) = Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛))) |
| 123 | 13, 75, 122 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (𝑓‘𝐴) = Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛))) |
| 124 | | simprr 772 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (𝑓‘𝐴) = 0) |
| 125 | 123, 124 | eqtr3d 2773 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛)) = 0) |
| 126 | 125 | oveq1d 7425 |
. . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛)) / (𝐴↑(deg‘𝑓))) = (0 / (𝐴↑(deg‘𝑓)))) |
| 127 | | fzfid 13996 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (0...(deg‘𝑓)) ∈ Fin) |
| 128 | 127, 79, 78, 83 | fsumdivc 15807 |
. . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛)) / (𝐴↑(deg‘𝑓)))) |
| 129 | 79, 83 | div0d 12021 |
. . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (0 / (𝐴↑(deg‘𝑓))) = 0) |
| 130 | 126, 128,
129 | 3eqtr3d 2779 |
. . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴↑𝑛)) / (𝐴↑(deg‘𝑓))) = 0) |
| 131 | 69, 121, 130 | 3eqtr2d 2777 |
. . . 4
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))‘(1 / 𝐴)) = 0) |
| 132 | | fveq1 6880 |
. . . . . 6
⊢ (𝑔 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) → (𝑔‘(1 / 𝐴)) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))‘(1 / 𝐴))) |
| 133 | 132 | eqeq1d 2738 |
. . . . 5
⊢ (𝑔 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) → ((𝑔‘(1 / 𝐴)) = 0 ↔ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))‘(1 / 𝐴)) = 0)) |
| 134 | 133 | rspcev 3606 |
. . . 4
⊢ (((𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘))) ∈ ((Poly‘ℤ) ∖
{0𝑝}) ∧ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧↑𝑘)))‘(1 / 𝐴)) = 0) → ∃𝑔 ∈ ((Poly‘ℤ) ∖
{0𝑝})(𝑔‘(1 / 𝐴)) = 0) |
| 135 | 62, 131, 134 | syl2anc 584 |
. . 3
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → ∃𝑔 ∈ ((Poly‘ℤ) ∖
{0𝑝})(𝑔‘(1 / 𝐴)) = 0) |
| 136 | | elaa 26281 |
. . 3
⊢ ((1 /
𝐴) ∈ 𝔸 ↔
((1 / 𝐴) ∈ ℂ
∧ ∃𝑔 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑔‘(1 / 𝐴)) = 0)) |
| 137 | 7, 135, 136 | sylanbrc 583 |
. 2
⊢ (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑓‘𝐴) = 0)) → (1 / 𝐴) ∈ 𝔸) |
| 138 | 3, 137 | rexlimddv 3148 |
1
⊢ ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
𝔸) |