MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aareccl Structured version   Visualization version   GIF version

Theorem aareccl 25686
Description: The reciprocal of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
aareccl ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝔸)

Proof of Theorem aareccl
Dummy variables 𝑓 𝑔 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaa 25676 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
21simprbi 497 . . 3 (𝐴 ∈ 𝔸 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
32adantr 481 . 2 ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
4 aacn 25677 . . . . 5 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
5 reccl 11820 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
64, 5sylan 580 . . . 4 ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
76adantr 481 . . 3 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (1 / 𝐴) ∈ ℂ)
8 zsscn 12507 . . . . . . 7 ℤ ⊆ ℂ
98a1i 11 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ℤ ⊆ ℂ)
10 simprl 769 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
11 eldifsn 4747 . . . . . . . . 9 (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ (𝑓 ∈ (Poly‘ℤ) ∧ 𝑓 ≠ 0𝑝))
1210, 11sylib 217 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓 ∈ (Poly‘ℤ) ∧ 𝑓 ≠ 0𝑝))
1312simpld 495 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝑓 ∈ (Poly‘ℤ))
14 dgrcl 25594 . . . . . . 7 (𝑓 ∈ (Poly‘ℤ) → (deg‘𝑓) ∈ ℕ0)
1513, 14syl 17 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (deg‘𝑓) ∈ ℕ0)
1613adantr 481 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑓 ∈ (Poly‘ℤ))
17 0z 12510 . . . . . . . 8 0 ∈ ℤ
18 eqid 2736 . . . . . . . . 9 (coeff‘𝑓) = (coeff‘𝑓)
1918coef2 25592 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝑓):ℕ0⟶ℤ)
2016, 17, 19sylancl 586 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (coeff‘𝑓):ℕ0⟶ℤ)
21 fznn0sub 13473 . . . . . . . 8 (𝑘 ∈ (0...(deg‘𝑓)) → ((deg‘𝑓) − 𝑘) ∈ ℕ0)
2221adantl 482 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((deg‘𝑓) − 𝑘) ∈ ℕ0)
2320, 22ffvelcdmd 7036 . . . . . 6 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) ∈ ℤ)
249, 15, 23elplyd 25563 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ (Poly‘ℤ))
25 0cn 11147 . . . . . 6 0 ∈ ℂ
26 eqid 2736 . . . . . . . . . 10 (coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))) = (coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))
2726coefv0 25609 . . . . . . . . 9 ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ (Poly‘ℤ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) = ((coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))‘0))
2824, 27syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) = ((coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))‘0))
2923zcnd 12608 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) ∈ ℂ)
30 eqidd 2737 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))
3124, 15, 29, 30coeeq2 25603 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0)))
3231fveq1d 6844 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0))
33 0nn0 12428 . . . . . . . . . 10 0 ∈ ℕ0
34 breq1 5108 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑘 ≤ (deg‘𝑓) ↔ 0 ≤ (deg‘𝑓)))
35 oveq2 7365 . . . . . . . . . . . . 13 (𝑘 = 0 → ((deg‘𝑓) − 𝑘) = ((deg‘𝑓) − 0))
3635fveq2d 6846 . . . . . . . . . . . 12 (𝑘 = 0 → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) = ((coeff‘𝑓)‘((deg‘𝑓) − 0)))
3734, 36ifbieq1d 4510 . . . . . . . . . . 11 (𝑘 = 0 → if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0))
38 eqid 2736 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))
39 fvex 6855 . . . . . . . . . . . 12 ((coeff‘𝑓)‘((deg‘𝑓) − 0)) ∈ V
40 c0ex 11149 . . . . . . . . . . . 12 0 ∈ V
4139, 40ifex 4536 . . . . . . . . . . 11 if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) ∈ V
4237, 38, 41fvmpt 6948 . . . . . . . . . 10 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0))
4333, 42ax-mp 5 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0)
4415nn0ge0d 12476 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 0 ≤ (deg‘𝑓))
4544iftrued 4494 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) = ((coeff‘𝑓)‘((deg‘𝑓) − 0)))
4615nn0cnd 12475 . . . . . . . . . . . 12 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (deg‘𝑓) ∈ ℂ)
4746subid1d 11501 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((deg‘𝑓) − 0) = (deg‘𝑓))
4847fveq2d 6846 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((coeff‘𝑓)‘((deg‘𝑓) − 0)) = ((coeff‘𝑓)‘(deg‘𝑓)))
4945, 48eqtrd 2776 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) = ((coeff‘𝑓)‘(deg‘𝑓)))
5043, 49eqtrid 2788 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = ((coeff‘𝑓)‘(deg‘𝑓)))
5128, 32, 503eqtrd 2780 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) = ((coeff‘𝑓)‘(deg‘𝑓)))
5212simprd 496 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝑓 ≠ 0𝑝)
53 eqid 2736 . . . . . . . . . . 11 (deg‘𝑓) = (deg‘𝑓)
5453, 18dgreq0 25626 . . . . . . . . . 10 (𝑓 ∈ (Poly‘ℤ) → (𝑓 = 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) = 0))
5513, 54syl 17 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓 = 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) = 0))
5655necon3bid 2988 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓 ≠ 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0))
5752, 56mpbid 231 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0)
5851, 57eqnetrd 3011 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) ≠ 0)
59 ne0p 25568 . . . . . 6 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ≠ 0𝑝)
6025, 58, 59sylancr 587 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ≠ 0𝑝)
61 eldifsn 4747 . . . . 5 ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ (Poly‘ℤ) ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ≠ 0𝑝))
6224, 60, 61sylanbrc 583 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ ((Poly‘ℤ) ∖ {0𝑝}))
63 oveq1 7364 . . . . . . . . 9 (𝑧 = (1 / 𝐴) → (𝑧𝑘) = ((1 / 𝐴)↑𝑘))
6463oveq2d 7373 . . . . . . . 8 (𝑧 = (1 / 𝐴) → (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
6564sumeq2sdv 15589 . . . . . . 7 (𝑧 = (1 / 𝐴) → Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
66 eqid 2736 . . . . . . 7 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))
67 sumex 15572 . . . . . . 7 Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)) ∈ V
6865, 66, 67fvmpt 6948 . . . . . 6 ((1 / 𝐴) ∈ ℂ → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
697, 68syl 17 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
7018coef3 25593 . . . . . . . . . . 11 (𝑓 ∈ (Poly‘ℤ) → (coeff‘𝑓):ℕ0⟶ℂ)
7113, 70syl 17 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (coeff‘𝑓):ℕ0⟶ℂ)
72 elfznn0 13534 . . . . . . . . . 10 (𝑛 ∈ (0...(deg‘𝑓)) → 𝑛 ∈ ℕ0)
73 ffvelcdm 7032 . . . . . . . . . 10 (((coeff‘𝑓):ℕ0⟶ℂ ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝑓)‘𝑛) ∈ ℂ)
7471, 72, 73syl2an 596 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘𝑛) ∈ ℂ)
754ad2antrr 724 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝐴 ∈ ℂ)
76 expcl 13985 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
7775, 72, 76syl2an 596 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴𝑛) ∈ ℂ)
7874, 77mulcld 11175 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) ∈ ℂ)
7975, 15expcld 14051 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝐴↑(deg‘𝑓)) ∈ ℂ)
8079adantr 481 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ∈ ℂ)
81 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝐴 ≠ 0)
8215nn0zd 12525 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (deg‘𝑓) ∈ ℤ)
8375, 81, 82expne0d 14057 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝐴↑(deg‘𝑓)) ≠ 0)
8483adantr 481 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ≠ 0)
8578, 80, 84divcld 11931 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) ∈ ℂ)
86 fveq2 6842 . . . . . . . . 9 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → ((coeff‘𝑓)‘𝑛) = ((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)))
87 oveq2 7365 . . . . . . . . 9 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → (𝐴𝑛) = (𝐴↑((0 + (deg‘𝑓)) − 𝑘)))
8886, 87oveq12d 7375 . . . . . . . 8 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → (((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) = (((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))))
8988oveq1d 7372 . . . . . . 7 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → ((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))))
9085, 89fsumrev2 15667 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))))
9146adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (deg‘𝑓) ∈ ℂ)
9291addid2d 11356 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (0 + (deg‘𝑓)) = (deg‘𝑓))
9392oveq1d 7372 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((0 + (deg‘𝑓)) − 𝑘) = ((deg‘𝑓) − 𝑘))
9493fveq2d 6846 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) = ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)))
9593oveq2d 7373 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((0 + (deg‘𝑓)) − 𝑘)) = (𝐴↑((deg‘𝑓) − 𝑘)))
9675adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝐴 ∈ ℂ)
9781adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝐴 ≠ 0)
98 elfznn0 13534 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(deg‘𝑓)) → 𝑘 ∈ ℕ0)
9998adantl 482 . . . . . . . . . . . . 13 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑘 ∈ ℕ0)
10099nn0zd 12525 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑘 ∈ ℤ)
10182adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (deg‘𝑓) ∈ ℤ)
10296, 97, 100, 101expsubd 14062 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((deg‘𝑓) − 𝑘)) = ((𝐴↑(deg‘𝑓)) / (𝐴𝑘)))
10395, 102eqtrd 2776 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((0 + (deg‘𝑓)) − 𝑘)) = ((𝐴↑(deg‘𝑓)) / (𝐴𝑘)))
10494, 103oveq12d 7375 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴𝑘))))
105104oveq1d 7372 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = ((((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴𝑘))) / (𝐴↑(deg‘𝑓))))
10679adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ∈ ℂ)
107 expcl 13985 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
10875, 98, 107syl2an 596 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴𝑘) ∈ ℂ)
10996, 97, 100expne0d 14057 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴𝑘) ≠ 0)
110106, 108, 109divcld 11931 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) ∈ ℂ)
11183adantr 481 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ≠ 0)
11229, 110, 106, 111divassd 11966 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴𝑘))) / (𝐴↑(deg‘𝑓))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓)))))
113106, 111dividd 11929 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) = 1)
114113oveq1d 7372 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) / (𝐴𝑘)) = (1 / (𝐴𝑘)))
115106, 108, 106, 109, 111divdiv32d 11956 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓))) = (((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) / (𝐴𝑘)))
11696, 97, 100exprecd 14059 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((1 / 𝐴)↑𝑘) = (1 / (𝐴𝑘)))
117114, 115, 1163eqtr4d 2786 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓))) = ((1 / 𝐴)↑𝑘))
118117oveq2d 7373 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓)))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
119105, 112, 1183eqtrd 2780 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
120119sumeq2dv 15588 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑘 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
12190, 120eqtrd 2776 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
12218, 53coeid2 25600 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ ℂ) → (𝑓𝐴) = Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)))
12313, 75, 122syl2anc 584 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓𝐴) = Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)))
124 simprr 771 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓𝐴) = 0)
125123, 124eqtr3d 2778 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) = 0)
126125oveq1d 7372 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = (0 / (𝐴↑(deg‘𝑓))))
127 fzfid 13878 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (0...(deg‘𝑓)) ∈ Fin)
128127, 79, 78, 83fsumdivc 15671 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))))
12979, 83div0d 11930 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (0 / (𝐴↑(deg‘𝑓))) = 0)
130126, 128, 1293eqtr3d 2784 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = 0)
13169, 121, 1303eqtr2d 2782 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = 0)
132 fveq1 6841 . . . . . 6 (𝑔 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) → (𝑔‘(1 / 𝐴)) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)))
133132eqeq1d 2738 . . . . 5 (𝑔 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) → ((𝑔‘(1 / 𝐴)) = 0 ↔ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = 0))
134133rspcev 3581 . . . 4 (((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = 0) → ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔‘(1 / 𝐴)) = 0)
13562, 131, 134syl2anc 584 . . 3 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔‘(1 / 𝐴)) = 0)
136 elaa 25676 . . 3 ((1 / 𝐴) ∈ 𝔸 ↔ ((1 / 𝐴) ∈ ℂ ∧ ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔‘(1 / 𝐴)) = 0))
1377, 135, 136sylanbrc 583 . 2 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (1 / 𝐴) ∈ 𝔸)
1383, 137rexlimddv 3158 1 ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cdif 3907  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cle 11190  cmin 11385   / cdiv 11812  0cn0 12413  cz 12499  ...cfz 13424  cexp 13967  Σcsu 15570  0𝑝c0p 25033  Polycply 25545  coeffccoe 25547  degcdgr 25548  𝔸caa 25674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-0p 25034  df-ply 25549  df-coe 25551  df-dgr 25552  df-aa 25675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator